Browse > Article
http://dx.doi.org/10.7845/kjm.2017.7036

Functional evaluation of sourdough containing lactic acid bacteria isolated from sliced radish kimchi  

Lim, Eun-Seo (Department of Food Science & Nutrition, Tongmyong University)
Kim, Young-Mog (Division of Food Science and Biotechnology, Pukyong National University)
Lee, Eun-Woo (Department of Life Science and Biotechnology, Dongeui University)
Publication Information
Korean Journal of Microbiology / v.53, no.3, 2017 , pp. 180-192 More about this Journal
Abstract
The purpose of this study is to investigate the antioxidative and antimicrobial activities of sourdough fermented with the lactic acid bacteria (LAB) isolated from sliced radish kimchi. According to 16S rRNA gene sequence analysis, the isolated lactic acid bacteria were categorized as Leuconostoc dextranicum SRK03, Lactobacillus brevis SRK15, Pediococcus halophilus SRK22, Lactobacillus acidophilus SRK30, Lactobacillus plantarum SRK38, Leuconostoc citreum SRK 42, and Lactobacillus delbrueckii SRK60 with sequence similarity of 99%. After fermentation with L. dextranicum SRK03, L. acidophilus SRK30, L. plantarum SRK38 or L. delbrueckii SRK60 and Saccharomyces cerevisiae KCTC 7246 at $30^{\circ}C$ for 24 h LAB and yeast in sourdough were present at levels of $10^9$ and $10^7CFU/g$, respectively. In particular, the titratable acidity and ethanol and exopolysaccharide contents of sourdough fermented with L. dextranicum SRK03 were also significantly (P < 0.05) higher than those of sourdough fermented with L. acidophilus SRK30, L. plantarum SRK38, or L. delbrueckii SRK60. The sourdough fermented with L. dextranicum SRK03 and L. acidophilus SRK30 showed not only good DPPH radical-scavenging capacity but anti-lipid peroxidation activity. In addition, the viable counts of Bacillus cereus ATCC 11778 and Staphylococcus aureus ATCC 6538 in sourdough during storage for 5 days at $25^{\circ}C$ were significantly (P < 0.05) lower than those of pathogenic bacteria in the control group due to the organic acids and bacteriocin produced by L. acidophilus SRK30 strain.
Keywords
antibacterial activity; antioxidant; exopolysaccharide; lactic acid bacteria; sourdough;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Coda, R., Rizzello, C.G., Pinto, D., and Gobbetti, M. 2012. Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl. Environ. Microbiol. 78, 1087-1096.   DOI
2 Corsetti, A. and Settanni, L. 2007. Lactobacilli in sourdough fermentation. Food Res. Int. 40, 539-558.   DOI
3 Corsetti, A., Settanni, L., and Van Sinderen, D. 2004. Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J. Appl. Microbiol. 96, 521-534.   DOI
4 De Vuyst, L. and Neysens, P. 2005. The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci. Technol. 16, 43-56.   DOI
5 Gerekova, P., Kockova, M., Hybenova, E., Brindzova, L., Jurikova, N., and Valik, L. 2011. Interactions between lactobacilli and yeasts and their impact on sourdough properties. Proceeding of the 6th International Congress Flour-Bread '11. 8th Croatian Congress of Cereal Technologists, Opatija, Croatia, 12-14 October.
6 Girotti, A.W. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39, 1529-1542.
7 Gjorgievski, N., Tomovska, J., Dimitrovska, G., Makarijoski, B., and Shartiati, M.A. 2014. Determination of the antioxidant activity in yogurt. J. Hy. Eng. Design 12, 88-92.
8 Gobbetti, M. 1998. The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 9, 267-274.   DOI
9 Church, F.C., Swaisgood, H.E., Porter, D.H., and Catignani, G.L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66, 1219-1227.   DOI
10 Gobbetti, M., Simonetti, M.S., Corsetti, A., Santinelli, F., Rossi, J., and Damiani, P. 1995. Volatile compound and organic acid productions by mixed wheat sour dough starters: influence of fermentation parameters and dynamics during baking. Food Microbiol. 12, 497-507.   DOI
11 Hole, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococccus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887.   DOI
12 Karrar, E.M.A. 2014. A review on: Antioxidant and its impact during the bread making process. Int. J. Nutr. Food Sci. 3, 592-596.   DOI
13 Katina, K., Sauri, M., Alakomi, H.L., and Mattila-Sandholm, T. 2002. Potential of lactic acid bacteria to inhibit rope spoilage in wheat sourdough bread. LWT-Food Sci. Technol. 35, 38-45.   DOI
14 Messens, W. and De Vuyst, L. 2002. Inhibitory substances produced by Lactobacilli isolated from sourdoughs- a review. Int. J. Food Microbiol. 72, 31-43.   DOI
15 Kockova, M., Gerekova, P., Petrulakova, Z., Hybenova, E., Sturdik, E., and ValiK, L. 2011. Evaluation of fermentation properties of lactic acid bacteria isolated from sourdough. Acta. Chimica Slovaca. 4, 78-87.
16 Leroy, F. and De Vuyst, L. 2004. Functional lactic bacteria starter cultures for the food fermentation industry. Trend Food Sci. Technol. 15, 67-78.   DOI
17 Mentes, O., Ercan, R., and Akcelik, M. 2007. Inhibitor activities of two Lactobacillus strains, isolated from sourdough, against ropeforming Bacillus strains. Food Cont. 18, 359-363.   DOI
18 Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., and Prajapati, J. 2015. Probiotics as potential antioxidants: a systematic review. J. Agric. Food Chem. 63, 3615-3626.   DOI
19 Nisa, Z.U., Rehman, S.U., Huma, N., and Shahid, M. 2016. Impact of mixed lactic acid bacterial (LAB) culture on flavoring profile and quality attributes of spring wheat sourdough bread. Pak. J. Agri. Sci. 53, 225-231.
20 Modler, H.W. 1994. Bifidogenic factors-sources, metabolism and applications. Int. Dairy J. 4, 383-407.   DOI
21 Polak-Berecka, M., Wasko, A., Szwajgier, D., and Choma, A. 2013. Bifidogenic and antioxidant activity of exopolysaccharides produced by Lactobacillus rhamnosus E/N cultivated on different carbon sources. Polish J. Micorbiol. 62, 161-189.
22 Paramithiotis, S., Chouliaras, Y., Tsakalidou, E., and Kalantzopoulos, G. 2005. Application of selected starter cultures for the production of wheat sourdough bread using a traditional three-stage procedure. Process Biochem. 40, 2813-2819.   DOI
23 Patel, A.K., Michaud, P., Singhania, R.R., Soccol, C.R., and Pandey, A. 2010. Polysaccharides from probiotics: new developments as food additives. Food Technol. Biotechnol. 48, 451-463.
24 Petrulakova, Z., Hybenova, E., Gerekova, P., Kockova, M., and Sturdik, E. 2009. Lactobacilli as natural bread preservatives. Proceeding of the 5th International Congress Flour-Bread '09. 7th Croatian Congress of Cereal Technologists, Opatija, Croatia, 21-23 October.
25 Robert, H., Gabriel, V., Lefebvre, D., Rabier, P., Tayssier, Y., and Foutagre-Faucher, C. 2006. Study of the behavior of Lactobacillus plantarum and Leuconostoc starters during a complete wheat sourdough breadmaking process. LWT-Food Sci. Technol. 39, 256-265.   DOI
26 Rosenquist, H. and Hansen, A. 1998. The antimicrobial effect of organic acids, sourdough and nisin against Bacillus subtilis and B. licheniformis isolated form wheat bread. J. Appl. Microbiol. 85, 621-623.   DOI
27 Settanni, L., Massitti, O., Van Sinderen, D., and Corsetti, A. 2005. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation. J. Appl. Microbiol. 99, 670-681.   DOI
28 Saeed, M., Yasmin, I., Khan, M.I., Pasha, I., Khan, M.R., Shabbir, A., and Khan, W.A. 2014. Lactic acid bacteria in sourdough fermentation; a safe approach for food preservation. Pak. J. Food Sci. 24, 211-217.
29 Sanalibaba, P. and Cakmak, G.A. 2016. Exopolysaccharides production by lactic acid bacteria. Appl. Microbiol. Open Access 2, 1-5.
30 Scott, R. and Sullivan, W.C. 2008. Ecology of fermented foods. Res. Human Ecol. 15, 25-31.
31 Thiele, C., Ganzle, G., and Vogel, R.F. 2002. Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem. 79, 45-51.   DOI
32 Thompson, J.M., Dodd, C.E.R., and Waites, W.M. 1993. Spoilage of bread by Bacillus. Int. Biodeter. Biodegr. 32, 55-66.   DOI
33 Valerio, F., De Bellis, P., Lonigro, S.L., Visconti, A., and Lavernicocca, P. 2008. Use of Lactobacillus plantarum fermentation products in breadmaking to prevent Bacillus subtilis ropy spoilage. Int. J. Food Microbiol. 122, 328-332.   DOI
34 Van Loo, J., Coussement, P., De Leenheer, L., Hoebregs, H., and Smits, G. 1995. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit. Rev. Food Sci. Nutr. 35, 525-552.   DOI
35 Ventimiglia, G., Alfonzo, A., Galluzzo, P., Corona, O., Francesca, N., Caracappa, S., Moschetti, G., and Settanni, L. 2015. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiol. 51, 57-68.   DOI
36 Banu, I., Vasilean, I., and Aprodu, I. 2010. Effect of lactic acid fermentation on antioxidant capacity of rye sourdough and bread. Food Sci. Technol. Res. 6, 571-576.
37 Afify, A.E.M., Romeilah, R.M., Sultan, S.I.M., and Hussein, M.M. 2012. Antioxidant activity and biological evaluations of probiotic bacteria strains. Int. J. Acad. Res. 4, 131-139.   DOI
38 Alfonzo, A., Ventimiglia, G., Corona, O., Di Gerlando, R., Gaglio, R., Francesca, N., Moschetti, G., and Settanni, L. 2013. Diversity and technological potential of lactic acid bacteria of wheat flours. Food Microbiol. 36, 343-354.   DOI
39 Ali, A.A. 2010. Beneficial role of lactic acid bacteria in food preservation and human health: A review. Res. J. Microbiol. 5, 1213-1221.   DOI
40 Arendt, E.K., Ryan, L.A.M., and Bello, D.F. 2007. Impact of sourdough on the texture of bread. Food Microbiol. 24, 165-174.   DOI
41 Banu, I., Vasilean, I., and Aprodu, I. 2012. Quality evaluation of the sourdough rye breads. AUDJG-Food Technol. 35, 94-105.
42 Caplice, E. and Fitzgerald, C.F. 1999. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50, 131-149.   DOI
43 Chavan, R.S. and Chavan, S.R. 2011. Sourdough technology-A traditional way for wholesome foods: a review. Com. Rev. Food Sci. Food Safety 10, 170-183.
44 Cheigh, H.S. and Park, K.Y. 1994. Biochemical, microbiological, and nutritional aspects of kimchi. Crit. Rev. Food Sci. Nutr. 34, 175-203.   DOI
45 Choi, H.C., Kim, Y.W., Hwang, I.Y., Kim, J.H., and Yoon, S. 2012. Evaluation of Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi as a starter culture for whole wheat sourdough. Food Chem. 134, 2208-2216.   DOI
46 Zhang, S., Su, L.L.Y., Li, H., Sun, Q., Liang, X., and Lv, J. 2011. Antioxidative activity of lactic acid bacteria in yogurt. Af. J. Microbiol. Res. 5, 5194-5201.
47 Weckx, S., Van Der Meulen, R., Maes, D., Scheirlinck, I., Huys, G., Vandamme, P., and De Vuyst, L. 2010. Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations. Food Microbiol. 27, 1000-1008.   DOI
48 Zhang, L., Liu, C., Li, D., Zhao, Y., Zhang, X., Zeng, X., Yang, Z., and Li, S. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54, 270-275.   DOI