• Title/Summary/Keyword: L. lactis A2

Search Result 116, Processing Time 0.025 seconds

Potential Probiotic Properties of Laetoeoeeus laetis NK34 Isolated from Jeotgal

  • Lee, Na-Kyoung;Noh, Ji-Eun;Choi, Gui-Hun;Park, Eun-Ju;Chang, Hyo-Ihl;Yun, Cheol-Won;Kim, Seung-Wook;Kang, Chang-Won;Yoon, Yoh-Chang;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.843-847
    • /
    • 2007
  • Strain NK34 was characterized for probiotic use. Strain NK34 was named Lactococcus lactis NK34 based on API 50 CHL kit results and 16S rDNA sequencing. L. lactis NK34 was highly resistant to artificial gastric juice (pH 2.5) and artificial bile acid. Based on results from the API ZYM kit, 4 enzymes were produced. L. lactis NK34 was resistant to all antibiotics tested except for $10\;{\mu}g/mL$ roxithromycin and $10\;{\mu}g/mL$ erythromycin. The cholesterol-lowering effect of L. lactis NK34 was about 46.9%. Concentrations of interleukin $(IL)-1{\alpha}$ in the $20{\times}$ concentrated supernatant of L. lactis NK34 was about 361 pg/mL. L. lactis NK34 was also found to inhibit the growth of colon cancer cells due to MNNG-induced DNA damage. These results demonstrate the potential of L. lactis NK34 as a health-promoting probiotic.

Optimum Conditions for the Formation of Acetoin as a Precursor of Tetramethylpyrazine during the Citrate Fermentation by Lactococcus lactis subsp. lactis biovar. diacetilactis FC1

  • Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.202-206
    • /
    • 1991
  • To produce acetoin as a precursor of the tetramethylpyrazine flavor compound from citrate by Lactococcus lactis ssp. lactis biovar. diacetilactis FC1, fermentation factors such as inital pH of culture media, temperature, concentration of Na-citrate, thiamin-HC1 and sugars were examined. The best acetoin production was achieved with initial pH in the culture media of 5.5, fermentation temperature of $34^{\circ}C$, Na-citrate concentration of 3%, addition of thiamin-HC1 at 2 mg/l and galactose as a carbon source. When fermentation was carried out under the optimum conditions, the exhaustion of Na-citrate and the production of acetoin took simultaneously and acetoin reached the maximum content, 80 mmole/l after 20 hours.

  • PDF

Characteristics of the Alcoholic Milk Product Fermented by Lactococcus lactis subsp. lactis TA29 and Saccharomyces exiguus SK2

  • Hong, Seok-San;Cha, Seong-Kwan;Kim, Wang-June;Koo, Young-Jo
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.50-53
    • /
    • 1996
  • A cultured milk product was made by fennenting 10$\%$ reconstituted skim milk with Lactococcus lactis subsp. lactis TA29 and Saccharomyces exiguus SK2. L. lactis TA29 and S. exiguus SK2 grew up to 1.0 $\times 10^9\;and\;2.0 \times 10^6$ cfu/ml, respectively. After the fermentation 21$\%$ of lactose was hydrolyzed, pH was lowered to 4.2, and titratable acidity and alcohol concentration were increased to 0.96 and 0.023$\%$, respectively. When the fermented milk was stored at $4{\circ}C$ for 9 days, the viable cell counts for L. lactis TA29 and S. exiguus SK2 were $6.5 \times 10^5\;and\;1.6 \times 10^6$ cfu/rnl, respectively. The alcoholic fermented milk prepared in this experiment was more inhibitory against some pathogenic bacteria including C. perfringens than commercial yoghurt products tested.

  • PDF

${\beta}$-1,4-Xylosidase Activity of Leuconostoc Lactic Acid Bacteria Isolated from Kimchi (김치에서 분리된 Leuconostoc 속 젖산균의 ${\beta}$-1,4-xylosidase 효소생산 특성)

  • Jang, Mi-Hee;Kim, Myoung-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • The ${\beta}$-xylosidase (EC 3.2.1.37) production capabilities of lactic acid bacteria in the genus Leuconostoc, isolated from a variety of kimchi (fermented vegetables), were examined. The intracellular levels of ${\beta}$-xylosidase were similar to the extracellular levels, when most Leuconostoc lactic acid bacteria were grown in a medium containing xylose as the carbon source. Intracellular ${\beta}$-xylosidase with a maximum activity of $1.2{\pm}0.1units/mL$ (mean${\pm}$standard error) was obtained from Leuconostoc lactis KCTC 13344, which was isolated from fermented Chinese cabbage. The optimum reaction conditions for Leu. lactis KCTC 13344 ${\beta}$-xylosidase activity were pH 6.0 and $30^{\circ}C$, and the addition of most divalent cations, except zinc, to the reaction mixture resulted in a slight increase in enzyme activity. Compared with a media containing other carbon sources, the ${\beta}$-xylosidase activity was 5 times higher when Leu. lactis KCTC 13344 was grown in a medium containing xylose as carbon source. Zymographic analysis indicated that the synthesis of Leu. lactis KCTC 13344 ${\beta}$-xylosidase (approximate size, 64 kDa) is induced by xylose. A maximum intracellular ${\beta}$-xylosidase activity of $7.1{\pm}0.3units/mL$ was obtained in a batch cultivation in an MRS medium containing 30 g/L xylose.

Oligosaccharide Production by Leuconostoc lactis CCK940 Which Has Glucansucrase Activity (Leuconostoc lactis CCK940의 Glucansucrase 활성에 의한 올리고당 생산 최적화)

  • Lee, Sulhee;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.383-390
    • /
    • 2017
  • Glucansucrase is an enzyme classified as a glycoside hydrolase (GH) 70 family, which catalyzes the synthesis of glucooligosaccharides with a low molecular weight using sucrose as a donor of D-glucopyranose and maltose as a carbohydrate acceptor. In this study, glucansucrase-producing lactic acid bacteria strain was isolated from the fermented foods collected in traditional markets, and the optimum conditions for the oligosaccharide production were investigated. The strain CCK940 isolated from Chinese cabbage kimchi was selected as an oligosaccharide-producing strain due to its high glucansucrase activity, with 918.2 mU/mL, and identified as Leuconostoc lactis. The optimum conditions for the production of oligosaccharides using Leu. lactis CCK940 were to adjust the initial pH to 6.0, add 5% (w/v) sucrose and 10% (w/v) maltose as a donor and acceptor molecules, respectively, and feed 5% (w/v) sucrose at 4 and 8 h of cultivation. When Leu. lactis CCK940 was cultured for 12 h at optimum conditions, at least four oligosaccharides with a polymerization degree of 2-4 were produced.

Identification and Characterization of Bacteriocin-Producing Lactic Acid Bacteria Isolated from Kimchi

  • Lee, Hun-Joo;Park, Chan-Sun;Joo, Yun-Jung;Kim, Seung-Ho;Yoon, Jung-Hoon;Park, Yong-Ha;Hwang, In-Kyeong;Ahn, Jong-Seog;Mheen, Tae-Ick
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.282-291
    • /
    • 1999
  • Lactic acid bacteria were isolated from Kimchi and screened for bacteriocin. A total of 99 strains showed antimicrobial activity when grown on solid media, yet only 10 showed antimicrobial activity in liquid media. Strain H-559, identified as Lactococcus lactis subsp. lactis, exhibited the strongest inhibitory activity and was active against pathogenic bacteria including Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus as well as other lactic acid bacteria. The antimicrobial substance produced by L. lactis subsp. lactis H-559 was confirmed to be a bacteriocin by the treatment of $\alpha$-chymotrypsin, and protease type Ⅸ and ⅩIV. The bacteriocin activity remained stable between pH 2.0 and pH 11.0 and during heating for 10 min at $100^{\circ}C$. The bacteriocin production started in the exponential phase and stopped in the stationary phase. L. lactis subsp. lactis H-559 showed the highest bacteriocin activity at a culture temperature of $25^{\circ}C$, and an inverse relationship between the bacteriocin productivity and mean growth rate at different culture temperatures was observed. The mean growth rate and bacteriocin productivity of L. lactis subsp. lactis H-559 increased as the initial pH of the media increased.

  • PDF

2-Thiobarbituric Acid, Color and Drip Loss Evaluations of Refrigerated Pork Loins Treated with Lactococcus lactis ATCC l1454 (Lactococcus lactis ATCC l1454로 처리한 냉장돼지 고기 등심의 2-Thiobarbituric Acid, Color 및 육즙유출의 평가)

  • 김광현;김창렬
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • Treating pork loins with lactic acid cultures (Lactococcus lactis subsp. ATCC 11454 grown in 10% milk solids) during storage at 4$^{\circ}C$ were studied. 2-Thiobarbituric acid (TBA), color. and drip loss evaluations of refrigerated pork loins were assessed. Pork loins were immersed in solutions containing 0∼10% individual lactic acid cultures for 0∼5 min. Pork loins treated with 3.96 log units of lactic acid cultures after storage of 1 days as 4$^{\circ}C$ had no significant difference (P > 0.05) TBA values compared to those of controls. Pork loins treated with 3.96 log unitss of lactic acid cultures during storage of 9 days at 4$^{\circ}C$ had no significant difference (P > 0.05). Hunter color L* and b* values compared to those of controls. However, pork loins treated with 4.10 and 4.23 log unitss of lactic acid cultures after storage of 1 and days at 4$^{\circ}C$ had a significant difference (P < 0.05) Hunter color a* values compared to those of controls. Pork loins treated with 4.10 and 4.23 log unitss of lactic acid cultures after storage of 4 days at 4$^{\circ}C$ had a significant difference (P < 0.05) drip loss values compared to those of controls.

  • PDF

Statistical optimization of culture media contained soy proteins and hypocotyl for the growth of Bifidobacterium lactis BL 740 and production of soy isoflavone aglycones (대두 단백질 및 배아를 이용한 Bifidobacterium lactis BL740의 균체성장 및 이소플라본 비배당체 생산를 위한 통계적 배지 최적화)

  • Lee, Choong-Young;Lee, Yoon-Bok;Lee, Keun-Ha;Park, Myeong-Soo;Hwang, Seock-Yeon;Hong, Seung-Bok;Yoo, Yung-Choon;Yu, Byung-Yeon;Kim, Chung-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.126-131
    • /
    • 2010
  • In order to maximize the growth of Bifidobacterium lactis BL 740 and soy isoflavone agycones production, we investigated the optimization of a culture medium containing soy hypocotyls, which are the byproducts of the soy manufacturing process, and soy proteins. The ingredients of the medium containing soy materials (S-medium) were selected by fractional factorial design (FFD) and central composite design (CCD) within a desirable range. The FFD was applied by six factors: glucose, cellobiose, fructooligosaccharide, soy peptone, soy protein, and soy hypocotyl. Soy protein, soy peptone, and soy hypocotyl were found to be significant factors from the result of FFD for both the growth of B. lactis BL 740 and aglycone production. The CCD was then applied with three variables found from FFD at five levels each and the optimum values were determined for the three variables: soy peptone, soy protein, and soy hypocotyl. In the case of the growth of B. lactics BL740, the proposed optimal media contained 12.73 g/L of soy protein, 29.55 g/L of soy peptone, and 130.67 g/L of soy hypocotyl. To produce isoflavone aglycones, optimized media was composed of 2.06 g/L, soy protein, 1.25 g/L of soy peptone, and 60.02 g/L of soy hypocotyl.

The Expression of Codon Optimised Hepatitis B Core Antigen (HBcAg) of Subgenotype B3 Open Reading Frame in Lactococcus lactis

  • Mustopa, Apon Zaenal;Wijaya, Sri Kartika;Ningrum, Ratih Asmana;Agustiyanti, Dian Fitria;Triratna, Lita;Alfisyahrin, Wida Nurul
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.449-458
    • /
    • 2019
  • Hepatitis B treatments using immune therapy are gaining interest because of the improvements in dendritic cell performance for antigen presentation, which induces an appropriate immune response and raises patient survival rates. This research aims to produce a significant amount of the HBcAg antigen, which can induce an immune response and have a curative effect on HBV infection. In this study, the HBV subgenotype B3 of the HBcAg gene was used, which is dominant in Indonesia. Further, Lactococcus lactis bacteria was used as the host because of its safety and tightly regulated protein expression. The codon usage for the HBcAg gene was optimized to improve protein expression in L. lactis, which is important because a codon is not random between species. The HBcAg gene is attached to a pNZ8148 plasmid and transformed into the L. lactis NZ3900 expression host. The results confirm that a positive protein band (21 kDa) in two fractions of purified HBcAg was recognized by both western blotting and dot blot hybridization, even if the HBcAg optimized codon has higher GC contents than that suggested for L. lactis expression. Overall, this research strengthens the broad use of L. lactis bacteria for any protein expression, including higher protein expression of codon optimized HBcAg gene compared to non-optimized genes. Furthermore, the improvement in the codon optimization of the HBcAg gene significantly increases the total protein expression by 10-20%, and the expression level of the codon optimized HBcAg increases 1.5 to 3.2-times that of the native HBcAg.

Antibacterial Effects of Lactococcus lactis HK-9 Isolated from Feces of a New Born Infant (신생아 태변에서 젖산세균인 Lactococcus lactis HK-9의 분리 및 항균활성)

  • Baek, Hyun;Ahn, Hye-Ran;Cho, Yun-Seok;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.127-133
    • /
    • 2010
  • The purpose of this work was to investigate the antibacterial activity derived from a lactic acid bacterium, Lactococcus lactis HK-9, isolated from the feces of a 2-day newborn infant. We characterized the physiological and biochemical properties of this strain. Both the BIOLOG system and phylogenetic analysis using 16S rRNA sequencing were utilized for identification, and the strain was assigned to the Lactococcus lactis species, designated as L. lactis HK-9, and registered in GenBank as [GU936712]. We monitored growth rate, production of lactic acid and acetic acid as metabolites, and pH during growth. The maximum concentrations of lactic acid and acetic acid reached 495.6 mM and 104.3 mM, respectively, and the initial pH of the cultures decreased from 7.0 to 4.1 after incubating for 60 h. HPLC was used to confirm the production of lactic acid and acetic acid. Significant antibacterial activity of the concentrated supernatant was demonstrated against Gram-positive (e.g., Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, MRSA) and Gram-negative (e.g., Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Shigella sonnei) bacteria by the plate diffusion method. The antibacterial activity was sensitive to protease, and the molecular weight of the presumed bacteriocin molecule was estimated to be about 4 kDa by tricine-SDS-PAGE.