• Title/Summary/Keyword: L., biodegradation

Search Result 225, Processing Time 0.025 seconds

Isolation of an Isocarbophos-Degrading Strain of Arthrobacter sp. scl-2 and Identification of the Degradation Pathway

  • Li, Rong;Guo, Xinqiang;Chen, Kai;Zhu, Jianchun;Li, Shunpeng;Jiang, Jiandong
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1439-1446
    • /
    • 2009
  • Isocarbophos is a widely used organophosphorus insecticide that has caused environmental pollution in many areas. However, degradation of isocarbophos by pure cultures has not been extensively studied, and the degradation pathway has not been determined. In this paper, a highly effective isocarbophos-degrading strain, scl-2, was isolated from isocarbophos-polluted soil. The strain scl-2 was preliminarily identified as Arthrobacter sp. based on its morphological, physiological, and biochemical properties, as well as 16S rDNA analysis. The strain scl-2 could utilize isocarbophos as its sole source of carbon and phosphorus for growth. One hundred mg/l isocarbophos could be degraded to a non detectable level in 18 h by scl-2 in cell culture, and isofenphos-methyl, profenofos, and phosmet could also be degraded. During the degradation of isocarbophos, the metabolites isopropyl salicylate, salicylate, and gentisate were detected and identified based on MS/MS analysis and their retention times in HPLC. Transformation of gentisate to pyruvate and fumarate via maleylpyruvate and fumarylpyruvate was detected by assaying for the activities of gentisate 1,2-dioxygenase (GDO) and maleylpyruvate isomerase. Therefore, we have identified the degradation pathway of isocarbophos in Arthrobacter sp. scl-2 for the first time. This study highlights an important potential use of the strain scl-2 for the cleanup of environmental contamination by isocarbophos and presents a mechanism of isocarbophos metabolism.

Assessment and Applications of Multi-Degradable Polyethylene Films as Packaging Materials

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon;Lee, Sun-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2006
  • Degradation performance of environmentally friendly plastics that can be disintegrated by combination of sunlight, microbes in soil, and heat produced in landfills was evaluated for use in industries. Two multi-degradable master batches (MCC-101 and MCC-102 were manufactured, separately mixed with polyethylene using film molding machine to produce 0.025 mm thick films, and exposed to sunlight, microbes, and heat. Low- and high-density polyethylene (LDPE and HDPE) films containing MCC-101 and MCC-102 became unfunctional by increasing severe cleavage at the surface and showed high reduction in elongation after 40 days of exposure to ultraviolet light. LDPE and HDPE films showed significant physical degradation after 100 and 120 days, respectively, of incubation at $68{\pm}2^{\circ}C$. SEM images of films cultured in mixed mold spore suspension at $30^{\circ}C$ and 85% humidity for 30 days revealed accelerated biodegradation on film surfaces by the action of microbes. LDPE films containing MCC-l01 showed absorption of carbonyls, photo-sensitive sites, at $1710\;cm${-1}$ when exposed to light for 40 days, whereas those not exposed to ultraviolet light showed no absorption at the same frequency. MCC-101-based LDPE films showed much lower $M_w$ distribution after exposure to UV than its counterpart, due to agents accelerating photo-degradation contained in MCC-101.

Isolation and Characterization of Comprehensive Polychlorinated Biphenyl-Degrading Bacterium, Enterobacter sp. LY402

  • Jia, Ling-Yun;Zheng, Ai-Ping;Xu, Li;Huang, Xiao-Dong;Zhang, Qing;Yang, Feng-Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.952-957
    • /
    • 2008
  • A Gram-negative bacterium, named LY402, was isolated from contaminated soil. 16S rDNA sequencing and measurement of the physiological and biochemical characteristics identified it as belonging to the genus Enterohacter. Degradation experiments showed that LY402 had the ability to aerobically transform 79 of the 91 major congeners of Aroclor 1242, 1254, and 1260. However, more interestingly, the strain readily degraded certain highly chlorinated and recalcitrant polychlorinated biphenyls (PCBs). Almost all the tri- and tetra-chlorobiphenyls (CBs), except for 3,4,3',4'-CB, were degraded in 3 days, whereas 73% of 3,4,3',4'-, 92% of the penta-, 76% of the hexa-, and 37% of the hepta-CBs were transformed after 6 days. In addition, among 12 octa-CBs, 2,2',3,3',5,5',6,6-CB was obviously degraded, and 2,2',3,3',4,5,6,6'- and 2,2',3,3',4,5,5',6'-CB were slightly transformed. In a metabolite analysis, mono- and dichlorobenzoic acids (CBAs) were identified, and parts of them were also transformed by strain LY402. Analysis of PCB degradation indicated that strain LY402 could effectively degrade PCB congeners with chlorine substitutions in both ortho- and para-positions. Consequently, this is the first report of an Enterobacteria that can efficiently degrade both low and highly chlorinated PCBs under aerobic conditions.

Degradation characteristics and upgrading biodegradability of phenol by dielectric barrier discharge plasma using catalyst (촉매 물질을 적용한 유전체 장벽 방전 플라즈마의 페놀 분해 특성 및 생분해도 향상)

  • Shin, Gwanwoo;Choi, Seungkyu;Kim, Jinsu;Weon, Kyoungja;Lee, Sangill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.75-83
    • /
    • 2020
  • This study investigated the degradation characteristics and biodegradability of phenol, refractory organic matters, by injecting MgO and CaO-known to be catalyst materials for the ozonation process-into a Dielectric Barrier Discharge (DBD) plasma. MgO and CaO were injected at 0, 0.5, 1.0, and 2 g/L, and the pH was not adjusted separately to examine the optimal injection amounts of MgO and CaO. When MgO and CaO were injected, the phenol decomposition rate was increased, and the reaction time was found to decrease by 2.1 to 2.6 times. In addition, during CaO injection, intermediate products combined with Ca2+ to cause precipitation, which increased the COD (chemical oxygen demand) removal rate by approximately 2.4 times. The biodegradability of plasma treated water increased with increase in the phenol decomposition rate and increased as the amount of the generated intermediate products increased. The biodegradability was the highest in the plasma reaction with MgO injection as compared to when the DBD plasma pH was adjusted. Thus, it was found that a DBD plasma can degrade non-biodegradable phenols and increase biodegradability.

Analysis of lignocellulose degradation by Oak mushroom (Lentinula edodes) (원목재배용 표고(Lentinula edodes)의 목질섬유소 분해특성 비교)

  • Jeong, Sang-Wook;Jang, Eun-Gyeong;Jeong, Chan-Mun;Ko, Han-Gyu;Kwon, Hyuk-Woo;Ban, Seung-Eon
    • Journal of Mushroom
    • /
    • v.16 no.4
    • /
    • pp.272-278
    • /
    • 2018
  • Lignin degrading enzymes from Lentinula edodes have broad substrate specificities, and therefore can degrade a variety of recalcitrant compounds. In this study, the lignolytic biodegradation was investigated in five different L. edodes fungi (Chunbaegko, Sanjo 303ho, Poongnyunko, Baekhwahyang, and Soohyangko). The fungi were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in malt extract broth medium. Sanjo 303ho, Poongnyunko, Baekhwahyang, and Soohyangko rapidly decolorized RBBR within 7 days. The activities of manganese peroxidase (MnP) and laccase were determined in the absence and presence of lignin. Poongnyunko displayed the highest ligninolytic activity on day 7 of incubation (2,809 U/mg and 2,230 U/mg for MnP and laccase, respectively).

Gaseous TCE and PCE Degradation with or without a Nonionic Surfactant (비이온 계면활성제의 주입과 비주입 할 경우 기체 상태의 TEC와 PEC 분해)

  • Kim, Jong-O
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.31-40
    • /
    • 1997
  • This study was conducted to investigate the biodegradation of gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) in an activated carbon biofilter inoculated with phenol-oxidizing microorganisms and to study the effect of surfactant concentration below its critical micelle concentration (CMC) on the re-moval efficiency of TCE or PCE. The investigation was conducted using two specially built stainless steel biofilters, one for TCE and the other for PCE, at residence times of 1.5~7 min. The removal efficiency of gaseous TCE was 100% at a residence time of 7 min and its average inlet concentration of 85 ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4~7 min and its average concentrations of 47~84 ppm. It was found that adsorption by GAC was a minor mechanism for TCE and PCE removal in the activated carbon biofilters. Transformation yields of gaseous TCE and PCE were about 8~48 g of TCE/g of phenol and 6~25g of PCE/g of phenol, according to residence times. This values showed one or two orders of magnitude less than aqueous TCE degradation. The TCE and PCE activated carbon biofilter performances were observed to be a little enhanced but not significantly, when the surfactant was introduced at concentrations of 5~50 mg/L.

  • PDF

Isolation of endosulfan degrading bacteria and their degradation characteristics (유기염소계 농약 endosulfan을 분해하는 미생물의 분리 및 분해 특성)

  • Shin, Jae-Ho;Kwak, Yun-Young;Kim, Won-Chan;So, Jai-Hyun;Shin, Hyun-Soo;Park, Jong-Woo;Kim, Tae-Hwa;Kim, Jang-Eok;Rhee, In-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.292-297
    • /
    • 2008
  • A bacterium, which was named to be Bacillus sp. E64-2, capable of degrading endosulfan was isolated from the environmental sample using enrichment culture technique. The Bacillus sp. E64-2 was able to degrade 99% of 10 mg/L endosulfan in the culture media within 7 days at $30^{\circ}C$. Endosulfan diol was the only intermediate by the endosulfan degrading bacterial culture and the pH value of the culture media was significantly increased to pH 8.4 from pH 7.0 after 7 days of incubation. When the endosulfan and the crude extract of the strain were incubated, endosulfan diol was a major metabolite. Both the enzymatic reaction and the pH-increasing effect contribute to the degradation of endosulfan by the bacterial culture.

Paclitaxel Coating on ePTFE Artificial Graft and the Release Behavior (ePTFE 인공혈관에 대한 파클리탁셀의 코팅 및 방출거동)

  • Lim, Soon-Yong;Kim, Cheol-Joo;Kim, Eun-Jin;Kwon, Oh-Kyoung;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.326-331
    • /
    • 2012
  • In this study, expanded poly(tetrafluoro ethylene) (ePTFE) graft was modified to be used as a hemodialysis vascular access. Biodegradable poly(D,L-lactide-$co$-glycolide) (PLGA) was coated onto the inner surface of ePTFE graft with paclitaxel, which is often used as an anti-cancer agent and for reducing neointimal hyperplasia. Surface characterization before and after PLGA coating was carried out by SEM and ATR-FTIR. Porous sturcture of ePTFE was maintained after coating of PLGA solution. The amounts of coated PLGA and paclitaxel determined by ATR-FTIR and HPLC were 1.96 and 0.263 mg/$cm^2$, respectively. Young's modulus was decreased and tensile strength was increased by PLGA coating. Released paclitaxel as a function of incubation time was monitored by HPLC. Approximately 35% of coated paclitaxel was released steadily for 4 weeks with the biodegradation of PLGA. From these results, it is expected that the effect of paclitaxel on reducing neointimal hyperplasia and stenosis is maintained for a long time.

Preparation and Characterization of Biodegradable Superporous Hydrogels (생분해성을 갖는 초다공성 수화젤의 제조 및 특성분석)

  • Yuk, Kun-Young;Choi, You-Mee;Park, Jeong-Sook;Kim, So-Yeon;Park, Ki-Nam;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.469-476
    • /
    • 2009
  • In this study, biodegradable superporous hydrogels(SPHs) with fast swelling and superabsorbent properties were prepared using biodegradable crosslinkers and their physicochemical properties were characterized. A biodegradable crosslinker (PLA-PEG-PLA DA) was synthesized by a ring opening polymerization of D,L-lactide (LA) using hydrophilic poly(ethylene glycol) as a macroinitiator, followed by diacrylation of the end groups for the introduction of polymerizable vinyl groups. Various kinds of hydrogels with different chemical compositions were prepared and characterized in terms of swelling ratio, swelling kinetics, and biodegradation properties. The synthetic results were confirmed by $^1H$-NMR, FT-IR and GPC measurements, and the porous structures of the prepared SPHs and their porosities were identified by a scanning electron microscope and mercury porosimetry, respectively. The physicochemical properties of SPHs could be controlled by varying their chemical compositions and their cytotoxicity were found to be very low by MTT assay.

Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis

  • Zhang, Yunhua;Zhang, Zhengyou;Dai, Li;Liu, Ying;Cheng, Maoji;Chen, Lijuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Objective: The aim of the study was to isolate gossypol-degrading bacteria and to assess its potential for gossypol degradation. Methods: Rumen liquid was collected from fistulated cows grazing the experimental pasture. Approximately 1 mL of the rumen liquid was spread onto basal medium plates containing 2 g/L gossypol as the only source of carbon and was then cultured at $39^{\circ}C$ to isolate gossypol-degrading bacteria. The isolated colonies were cultured for 6 h and then their size and shape observed by microscope and scanning electron microscope. The 16S rRNA gene of isolated colonies was sequenced and aligned using National Center for Biotechnology Information-Basic Local Alignment Search Tool. The various fermentation conditions, initial pH, incubation temperature, inoculum level and fermentationperiod were analyzed in cottonseed meal (CSM). The crude protein (CP), total gossypol (TG), and free gossypol (FG) were determined in CSM after fermentation with isolated strain at $39^{\circ}C$ for 72 h. Results: Screening results showed that a single bacterial isolate, named Rumen Bacillus Subtilis (RBS), could use gossypol as a carbon source. The bacterium was identified by 16S rDNA sequencing as being 98% homologous to the sequence of Bacillus subtilis strain GH38. The optimum fermentation conditions were found to be 72 h, $39^{\circ}C$, pH 6.5, moisture 50%, inoculum level $10^7cell/g$. In the optimum fermentation conditions, the FG and TG content in fermented CSM decreased 78.86% and 49% relative to the control. The content of CP and the essential amino acids of the fermented CSM increased respectively, compared with the control. Conclusion: The isolation of a gossypol-degrading bacterium from the cow rumen is of great importance for gossypol biodegradation and may be a valuable potential source for gossypol-degradation of CSM.