DOI QR코드

DOI QR Code

Isolation of an Isocarbophos-Degrading Strain of Arthrobacter sp. scl-2 and Identification of the Degradation Pathway

  • Li, Rong (Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University) ;
  • Guo, Xinqiang (Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University) ;
  • Chen, Kai (Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University) ;
  • Zhu, Jianchun (Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University) ;
  • Li, Shunpeng (Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University) ;
  • Jiang, Jiandong (Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University)
  • Published : 2009.11.30

Abstract

Isocarbophos is a widely used organophosphorus insecticide that has caused environmental pollution in many areas. However, degradation of isocarbophos by pure cultures has not been extensively studied, and the degradation pathway has not been determined. In this paper, a highly effective isocarbophos-degrading strain, scl-2, was isolated from isocarbophos-polluted soil. The strain scl-2 was preliminarily identified as Arthrobacter sp. based on its morphological, physiological, and biochemical properties, as well as 16S rDNA analysis. The strain scl-2 could utilize isocarbophos as its sole source of carbon and phosphorus for growth. One hundred mg/l isocarbophos could be degraded to a non detectable level in 18 h by scl-2 in cell culture, and isofenphos-methyl, profenofos, and phosmet could also be degraded. During the degradation of isocarbophos, the metabolites isopropyl salicylate, salicylate, and gentisate were detected and identified based on MS/MS analysis and their retention times in HPLC. Transformation of gentisate to pyruvate and fumarate via maleylpyruvate and fumarylpyruvate was detected by assaying for the activities of gentisate 1,2-dioxygenase (GDO) and maleylpyruvate isomerase. Therefore, we have identified the degradation pathway of isocarbophos in Arthrobacter sp. scl-2 for the first time. This study highlights an important potential use of the strain scl-2 for the cleanup of environmental contamination by isocarbophos and presents a mechanism of isocarbophos metabolism.

Keywords

References

  1. Casellas, M., M. Grifoll, J. M. Ayona, and A. M. Solanasi. 1997. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl. Environ. Microbiol. 63: 819-826
  2. Ferreira, M. I. M., J. R. Marchesi, and D. B. Janssen. 2008. Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl. Microbiol. Biotechnol. 78: 709-717 https://doi.org/10.1007/s00253-008-1343-3
  3. Grund, E., B. Denecke, and R. Eichenlaub. 1992. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl. Environ. Microbiol. 58: 1874-1877
  4. Hong, Q., Z. H. Zhang, Y. F. Hong, and S. P. Li. 2007. A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int. Biodeter. Biodegrad. 59: 55-61 https://doi.org/10.1016/j.ibiod.2006.07.013
  5. Huang, G. M., J. O. Yang, R. G. B. Willy, Y. P. Yang, and C. J. Tao. 2002. High-performance liquid chromatographic assay of dichlorvos, isocarbophos and methyl parathion from plant leaves using chemiluminescence detection. Anal. Chim. Acta 474: 21-29 https://doi.org/10.1016/S0003-2670(02)01014-0
  6. Jia, K. Z., Z. L. Cui, J. He, P. Guo, and S. P. Li. 2006. Isolation and characterization of a denitrifying monocrotophos-degrading Paracoccus sp. M-1. FEMS Microbiol. Lett. 263: 155-162 https://doi.org/10.1111/j.1574-6968.2006.00389.x
  7. Jia, Z., Y. Li, S. Lu, H. Peng, J. Ge, and S. Chen. 2006. Treatment of organophosphate-contaminated wastewater by acidic hydrolysis and precipitation. J. Hazard. Mater. 129: 234-238 https://doi.org/10.1016/j.jhazmat.2005.08.032
  8. Lack, L. 1959. The enzymic oxidation of gentisic acid. Biochim. Biophys. Acta 34: 117-123 https://doi.org/10.1016/0006-3002(59)90239-2
  9. Lack, L. 1961. Enzymic cis-trans isomerization ofmaleylpyruvic acid. J. Biol. Chem. 236: 2835-2840
  10. Li, X. H., J. He, and S. P. Li. 2007. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res. Microbiol. 158:143-149 https://doi.org/10.1016/j.resmic.2006.11.007
  11. Lin, K., W. Liu, L. Li, and J. Gan. 2008. Single and joint acute toxicity of isocarbophos enantiomers to Daphnia magna. J. Agric. Food Chem. 56: 4273-4277 https://doi.org/10.1021/jf073535l
  12. Luo, Q. F., M. Chen, and Q. Z. Wang. 1995. Study on degradation mechanism of organophosphorus pesticide isocarbophos by immobilized microorganism. Chin. J. Environ. 16: 14-16
  13. Roberts, E. A. H. and D. J. Wood. 1951. A study of the polyphenols in tea leaf by paper chromatography. Biochem. J. 49: 414-422
  14. Sajjaphan, K., N. Shapir, L. P. Wackett, M. Palmer, B. Blackmon, J. Tomkins, and M. J. Sadowsky. 2004. Arthrobacter aurescens TCI atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl. Environ. Microbiol. 70: 4402-4407 https://doi.org/10.1128/AEM.70.7.4402-4407.2004
  15. Singh, B. K., A. Walker, and D. J. Wright. 2006. Bioremedial potential of fenarniphos and chlorpyrifos degrading isolates: Influence of different environmental conditions. Soil Biol. Biochem. 38: 2682-2693 https://doi.org/10.1016/j.soilbio.2006.04.019
  16. Suzuki, K., T. Gomi, and E. Itagaki. 1991. Intermediate and mechanism of hydroxylation of o-iodophenol by salicylate hydroxylase. Biochem. J. 109: 791-797
  17. Sweeney, M. J., D. H. Hoffman, and M. A. Esterman. 1972. Metabolism and biochemistry of mycophenolic acid. Cancer Res. 32: 1803-1809
  18. Tanaka, H., S. Sugiyama, K. Yano, and K. Arima 1957. Isolation of fumarylpyruvic acid as an intermediate of the gentisic acid oxidation by Pseudomonas ovalis var. S-5. Agr. Chem. Soc. Jpn. Bull. 21: 67-68 https://doi.org/10.1271/bbb1924.21.67
  19. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeamougin, and D. G. Higgins. 1997. The Clustal_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids. Res. 25: 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  20. Wang, J. F., M. H. Gao, N. F. Wu, and C. P. Pan. 2008. The degradation effects of a Pseudomonas hydrolase OPHC2 to organophosphorus insecticides. Phosphorus Sulfur Silicon Relat. Elem. 183: 804-810 https://doi.org/10.1080/10426500701808234
  21. Wang, P., S. Jiang, D. Liu, G. Jia, Q. Wang, P. Wang, and Z. Zhou. 2005. Effect of alcohols and temperature on the direct chiral resolutions of fipronil, isocarbophos and carfentrazoneethyl. Biomed. Chromatogr. 19: 454-458 https://doi.org/10.1002/bmc.505
  22. Zhang, R. F., Z. L. Cui, X. Z. Zhang, J. D. Jiang, J. D. Gu, and S. P. Li. 2006. Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17: 465-472 https://doi.org/10.1007/s10532-005-9018-6
  23. Zhou, N. Y., S. L. Fuenmayor, and P. A. Williams. 2001. Nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J. Bacteriol. 183: 700-708 https://doi.org/10.1128/JB.183.2.700-708.2001
  24. Zhou, N. Y., A. D. Jumaa, S. B. Mark, and A. W. Peter. 2002. Salicylate 5-hydroxylase from Ralstonia sp. strain U2: A monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. J. Bacteriol. 184: 1547-1555 https://doi.org/10.1128/JB.184.6.1547-1555.2002

Cited by

  1. Biodegradation of Benazolin-Ethyl by Strain Methyloversatilis sp. cd-1 Isolated from Activated Sludge vol.62, pp.2, 2009, https://doi.org/10.1007/s00284-010-9746-7
  2. The biodegradation pathway of triethylamine and its biodegradation by immobilized Arthrobacter protophormiae cells vol.186, pp.1, 2009, https://doi.org/10.1016/j.jhazmat.2010.10.007
  3. Characterization of Fluoroglycofen Ethyl Degradation by Strain Mycobacterium phocaicum MBWY-1 vol.62, pp.6, 2009, https://doi.org/10.1007/s00284-011-9918-0
  4. Biodegradation of synthetic pyrethroids by Ochrobactrum tritici strain pyd-1 vol.27, pp.10, 2009, https://doi.org/10.1007/s11274-011-0698-2
  5. Characterisation and identification of carbofuran-utilising bacteria isolated from agricultural soil vol.28, pp.2, 2009, https://doi.org/10.1080/02757540.2011.628317
  6. Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides vol.23, pp.3, 2009, https://doi.org/10.1007/s10532-011-9517-6
  7. An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P-O-Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group vol.94, pp.6, 2009, https://doi.org/10.1007/s00253-011-3709-1
  8. Enantioselective Analysis and Degradation Studies of Isocarbophos in Soils by Chiral Liquid Chromatography–Tandem Mass Spectrometry vol.60, pp.41, 2009, https://doi.org/10.1021/jf302620s
  9. Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter vol.5, pp.None, 2009, https://doi.org/10.1038/srep08642
  10. Simultaneous enantioselective determination of isocarbophos and its main metabolite isocarbophos oxon in rice, soil, and water by chiral liquid chromatography and tandem mass spectrometry vol.38, pp.10, 2015, https://doi.org/10.1002/jssc.201500155
  11. Effects of Bio-organic Fertilizers Produced by FourBacillus amyloliquefaciensStrains on Banana Fusarium Wilt Disease vol.23, pp.3, 2009, https://doi.org/10.1080/1065657x.2015.1020398
  12. Interaction of carbon nanotubes with microbial enzymes: conformational transitions and potential toxicity vol.4, pp.10, 2009, https://doi.org/10.1039/c7en00512a
  13. Insight Into Metabolic Versatility of an Aromatic Compounds-Degrading Arthrobacter sp. YC-RL1 vol.9, pp.None, 2009, https://doi.org/10.3389/fmicb.2018.02438
  14. Insight Into the Diversity and Possible Role of Plasmids in the Adaptation of Psychrotolerant and Metalotolerant Arthrobacter spp. to Extreme Antarctic Environments vol.9, pp.None, 2009, https://doi.org/10.3389/fmicb.2018.03144
  15. Biodegradation of persistent environmental pollutants by Arthrobacter sp. vol.26, pp.9, 2009, https://doi.org/10.1007/s11356-019-04358-0
  16. Studying soil-reclamation state of rice agricultural landscapes vol.210, pp.None, 2009, https://doi.org/10.1051/e3sconf/202021004006