• Title/Summary/Keyword: L-rhamnose

Search Result 78, Processing Time 0.024 seconds

Studies on the Chemical Structure of the New Polysaccharide C - (The New Polysaccharides of Gum Tragacanth. II) - (Tragacanth gum 의 신다당류(新多糖類) C 의 화학구조(化學構造) - Tragacanth gum의 신다당류(新多糖類)에 관(關)한 연구(硏究) 제2보(第二報) -)

  • Lee, Sung-Hwan
    • Applied Biological Chemistry
    • /
    • v.3
    • /
    • pp.25-48
    • /
    • 1962
  • The polysaccharide C prepared from gum tragacanth powder (U. S. P. grade) by the precipitation method with 85% ethanol was a neutral polysaccharide, $[{\alpha}]^{30}_D-72.2$. The polysaccharide C consisted of L-rhamnose, D-xylose, L-arabinose and D-galactose in the molar ratio 2:1:17:9 (Table 1, 2, 3, ). The polysaccharide C was methylated with dimethylsulphate and 40% NaOH, and Purdies regent. The hydrolyzate of fully methlated product ($[{\alpha}]^{22}_D-102$ in chloroform, the methoxy content 40.6%) was composed of 2, 3, 5-tri-O-methyl-L-arabofuranose (I), 3,4-di-O-methyl-L-rhamnopyranose (II), 2,3-di-O-methyl-D-xylose (III), 2,3,4-tri-O-methyl-D-galactopyranose (IV), 2,4-di-O-methyl-L-arabopyranose (?), 2,4-di-O-methyl-D-galactose(VI), 2-O-methyl-D-arabinose (VII), and L-arabopyranose(VIII) (Table 4, 5, and Fig. 4). The first partial hydrolysis (A) of the polysaccharide C with 0.05N-HCl for 4.5 hours at $80-85^{\circ}C$ released only L-arabinose: the second hydrolysis (B) with 0.1N-HCl for 5 hours at $80-85^{\circ}C$, L-arabinose and D-galactose; and the third hydrolysis (C) with 0.3N-HCl at $90-95^{\circ}C$ in sealed tube, L-rhamnose, D-xylose, L-arabinose and D-galactose. From the unhydrolyzate A' were found L-rhamnose, D-xylose, L-arabinose, and D-galactose; from B' L-rhamnose, d-xylose, L-arabinose and D-galactose; and from C' D-xylose and D-galactose respectively (Table 6). The periodate consumption and formic acid production of the polysaccharide C were measured at various time intervals. After 120 hours periodat was consumed by 1.23 mole per $C_5H_8O_4$ and formic acid was produced 0.78 mole per $C_5H_8O_4$ (Table 7). Although a definite chemical structure for this polysaccharide C may not be formulated, experimental data, especially, from methylation, partial hydrolysie and determination of its molar ratio, and periodate analysis showed that the polysaccharide C is a highly branched polysaccharide and would be constructed of galactoaraban as a main chain residue and L-arabofuranose, D-galactopyranosyl $(1{\rightarrow}1)$-L-arabofuranose, D-xylopyranosyl $(1{\rightarrow}2)$-L-rhamnopyranosyl $(1{\rightarrow}1)$-L-arabofuranose, and L-rhamnopyranosyl $(1{\rightarrow}1)$-arabofuranose, and D-galactopyranosyl-$(1{\rightarrow}2)$-L-arabopyranosyl-$(1{\rightarrow}1)$-I-arabofuranose as a branch chain or end group (page 21).

  • PDF

Cloning and Idendification of dTDP-L-Rhamnose Biosynthetic Gene Cluster from Thermus caldophilus GK24

  • Kim, Ki-Chan;Lee, Seung-Don;Han, Ju-Hee;Sohng, Jae-Kyung;Liou, Kwang-Kyoung
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.749-754
    • /
    • 2000
  • PCR primers were designed based on consensus sequences of dTDP-D-glucose 4,6-dehydratase, one of the enzymes involved in the biosynthesis of deoxysugar. The PCR product (360 bp) was obtained from Thermus caldophilus GK24. Colony hybridization was carried out to the cosmid library constructed from T. caldophilus GK24 genomic DNA by the PCR product DNA fragment. We isolated a cosmid clone (pSMTC-1) that was subcloned to call pKCB series plasmid (BamHI fragments), partially sequenced and analyzed. pKCB80 (4.2 kb-BamHI DNA fragment) of them showed ORFs that was orfA, orfB, orfC and orfD. The orfABCD gene cluster is the deosysugar biosynthetic gene ; orfA (glucose-1-phosphate thymidylytransferase), orfB (dTDP-D-glucose 4,6-dehydratase), orfC (dTDP-4-keto-L-rhamnose reductase) and orfD (dTDP-4-keto-6-deoxy-D-glucose 3,5-epimerase). The gene cluster that was related in biosynthesis of dTDP-L-rhamnose was also identified by computer analysis, and we proposed that the biosynthetic pathway of deoxysugar analyzed from DNA sequencing of pKCB80 is from D-glucose-1-phosphate, dTDP-D-glucose, dTDP-4-keto-6-deoxy-D-glucose via dTDP-4-keto-L-rhamnose to dTDP-L-rhamnose.

  • PDF

Bioethanol Production from Seaweed Ulva pertusa for Environmental Application (해조류 구멍갈파래 (Ulva pertusa)의 친환경적 이용을 위한 바이오에탄올의 생산)

  • Kim, Jong-Deog;Yoon, Yang-Ho;Shin, Tai-Sun;Kim, Min-Yong;Byun, Hyun-Soo;Oh, Seok-Jin;Seo, Hyo-Jin
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.317-322
    • /
    • 2011
  • Ulva pertusa is one of the worst pollutant like a waste vinyl after agriculture and caused bad smell at seashore in Jejudo and south area of korean peninsular. For favorable environmental utilization of Ulva pertusa, it could be applied for ethanol production with its acid hydrolysate. The components of hydrolysate included fermentable sugar of glucose, xylose, mannose, galactose, and higher amounts of unfermentable rhamnose. Fermentable sugars were converted to ethanol with S. cerevisiae, also xylose to ethanol with P. stipitis, their maximun ethanol production at optimum conditions were 462 ${\mu}g$/mL and 475 ${\mu}g$/mL, respectively. While, rhamnose cannot be changed to ethanol with S. cerevisiae or P. stipitis, alone. Combination of S. cerevisiae and P. stipitis can convert rhamnose to ethanol, because P.stipitis degradaded rhamnose to pyruvate, and then S. cerevisiae convert to ethanol, at optimum conditions, ethanol reached to 782 ${\mu}g$/mL (30.24%) that is higher than that of 2 strain alone from 500 mg of dried Ulva pertusa contained 2586.45 ${\mu}g$/mL of reduced sugars. Ulva pertusa can be utilized for renewal energy insted of environmenatal enemy.

Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum sp. CSL1 Producing ʟ-Rhamnulose from ʟ-Rhamnose

  • Shen, Min;Ju, Xin;Xu, Xinqi;Yao, Xuemei;Li, Liangzhi;Chen, Jiajia;Hu, Cuiying;Fu, Jiaolong;Yan, Lishi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1122-1132
    • /
    • 2018
  • In this study, we attempted to find new and efficient microbial enzymes for producing rare sugars. A ribose-5-phosphate isomerase B (OsRpiB) was cloned, overexpressed, and preliminarily purified successfully from a newly screened Ochrobactrum sp. CSL1, which could catalyze the isomerization reaction of rare sugars. A study of its substrate specificity showed that the cloned isomerase (OsRpiB) could effectively catalyze the conversion of $\text\tiny{L}$-rhamnose to $\text\tiny{L}$-rhamnulose, which was unconventional for RpiB. The optimal reaction conditions ($50^{\circ}C$, pH 8.0, and 1 mM $Ca^{2+}$) were obtained to maximize the potential of OsRpiB in preparing $\text\tiny{L}$-rhamnulose. The catalytic properties of OsRpiB, including $K_m$, $k_{cat}$, and catalytic efficiency ($k_{cat}/K_m$), were determined as 43.47 mM, $129.4sec^{-1}$, and 2.98 mM/sec. The highest conversion rate of $\text\tiny{L}$-rhamnose under the optimized conditions by OsRpiB could reach 26% after 4.5 h. To the best of our knowledge, this is the first successful attempt of the novel biotransformation of $\text\tiny{L}$-rhamnose to $\text\tiny{L}$-rhamnulose by OsRpiB biocatalysis.

Overexpression, Purification and Truncation Analysis of RmlC Protein of Mycobacterium tuberculosis

  • Lee, Jong-Seok;Lee, Tae-Yoon;Park, Jae-Ho;Kim, Jong-Sun;Lee, Tae-Jin;Lee, Jai-Youl;Kim, Sung-Kwang
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.4
    • /
    • pp.273-282
    • /
    • 2000
  • dTDP-rhamnose provides L-rhamnose to the bridge-like structure between mycolyl arabinogalactan and peptidoglycan of the mycobacterial cell wall. dTDP-rhamnose is composed of glucose-l-phosphate and dTTP by four enzymes encoded by rmlA-D. To determine the region(s) of RmlC protein essential for its dTDP-4-keto-6-deoxyglucose epimerase activity, we overexpressed both whole (202 amino acids) and three different truncated (N-terminal 106 or 150 or C-terminal 97 amino acids) RmlC proteins of Mycobacterium tuberculosis. The RmlC enzyme activity in the soluble lysates of ${\Delta}rmlC$ E. coli strain $S{\Phi}874$ (DE3 PlysS) expressing the wild type or truncated rmlC genes was initially analyzed by three sequential reactions from dTDP-glucose to dTDP-rhamnose in the presence of purified RmlB and RmlD. All three soluble lysates containing the truncated RmlC proteins showed no enzyme activity, while that containing the wild type RmlC was active. This wild type RmlC was then overexpressed and purified. The incubation of the purified RmlC enzyme so obtained with dTDP-4-keto-6-deoxyglucose resulted in the conversion of dTDP-4-keto-rhamnose. The results show that the truncated regions of the RmlC protein are important for the RmlC enzyme activity in M. tuberculosis.

  • PDF

Biosynthesis of Glycosylated Derivatives of Tylosin in Streptomyces venezuelae

  • Han, Ah-Reum;Park, Sung-Ryeol;Park, Je-Won;Lee, Eun-Yeol;Kim, Dong-Myung;Kim, Byung-Gee;Yoon, Yeo-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.613-616
    • /
    • 2011
  • Streptomyces venezuelae YJ028, bearing a deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes, was used as a bioconversion system for combinatorial biosynthesis of glycosylated derivatives of tylosin. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of TDP-3-O-demethyl-D-chalcose or TDP-L-rhamnose in conjunction with the glycosyltransferaseauxiliary protein pair DesVII/DesVIII were expressed in a S. venezuelae YJ028 mutant strain. Supplementation of each mutant strain capable of producing TDP-3-O-demethyl-D-chalcose or TDP-L-rhamnose with tylosin aglycone tylactone resulted in the production of the 3-O-demethyl-D-chalcose, D-quinovose, or L-rhamnose-glycosylated tylactone.

Acinetobacter calcoaceticus Glucose-1-phosphate Thymidylyltransferase: Cloning, Sequencing, and Expression in E.coli

  • Eun, Suk-Ho;Kim, Dae-Jin;Kim, Yu-Sam
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.230-236
    • /
    • 2001
  • dTDP-rhamnose is synthesized from dTTP and glucose-1-phosphate by four enzymatic steps in the gram-negative bacteria. By using a homologous PCR product, a gene cluster encoding four genes (rfbA, rfbB, rfbC, rfbD) involved in L-rhamnose biosynthesis by Acinetobacter calcoaceticus was isolated and sequenced. The four genes were clustered on the biosynthetic operon in the order of rfbB, D, A, C. A gene, rfbA, encoding glucose-l-phosphate thymidylyltransferase (RfbA), was cloned from A. calcoaceticus pathogenic and encapsulated in the gram-negative bacterium. This enzyme catalyzes the formation of dTDP-D-glucose From $\alpha$-D-glucose-1-phosphate and dTTP.RfbA was amplified by PCR and inserted into the $T_7$ expression system. The activity of RfbA was determined by the capillary electrophoresis. The $K_m$ values for dTTP and $\alpha$-D-glucose-1-phosphate were calculated to be 1.27 mM and 0.80 mM, respectively by using the Line-Weaver Burk plot. RfbA is inactivated by diethylpyrocarbonate.

  • PDF

Lectin Activity and Chemical Characteristics of Escherichia coli, Lactobacillus spp. and Bifidobacterium spp. from Gastrointestinal Mucosa of Growing Pigs

  • Gao, W.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.863-868
    • /
    • 2004
  • Lectin activities and chemical characteristics of Escherichia coli, Lactobacillus spp. and Bifidobacterium spp. originating from the porcine cecal mucosal layer were studied based on hemagglutination assay (HA) and hemagglutination inhibition assay (HIA). Although all the bacterial strains were able to agglutinate erythrocytes of porcine or rabbit origin, much higher HA titers were consistently observed for Lactobacillus spp. than for E. coli or for Bifidobacterium spp. A remarkable reduction in HA titers occurred by the treatment of E. coli and Lactobacillus spp. with protease or trypsin and of Bifidobacterium spp. with protease, trypsin or periodate. There were no significant effects on the HA titers of the three groups of bacteria after the treatment with lipase. Hemagglutination of E. coli was strongly inhibited by D (+)-mannose and D (+)-galactose; Lactobacillus spp. by $\alpha$-L-rhamnose and methyl-$\beta$-galactopyranoside; Bifidobacterium spp. by D (+)-alactose, $\alpha$-L-rhamnose, $\alpha$-L-fucose, L (+)-arabinose, D (+)-mannose, D (-)-fructose at a relatively low concentration (1.43 to 3.75 mg/ml). These results, combined with the enhanced HA activities of the three bacterial strains by modification of rabbit erythrocytes with neuraminidase and abolished HA activity of E. coli after treatment with $\beta$-galactosidase, indicate that it might be the glycoproteinous substances surrounding the surface of the bacterial cells that are responsible for the adhesions of these microorganisms by recognizing the specific receptors on the red blood cell.

Sugar Constituents of Jalapin from Sweet Potato Tubers (고구마樹脂중 잘라핀의 糖構成에 관한 硏究)

  • SU RAE LEE;KOO HEUNG CHUNG;HO SIK KIM
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.96-101
    • /
    • 1969
  • Jalapin purified from the tubers of the sweet potato (Ipomoea batatas) was deacylated and subjected to structural elucidation. Complete and degraded acid hydrolyses indicated the presence of L-rhamnose, D-fucose and D-glucose in the molar ratio of 1: 1: 1 and in the increasing order of acid-stability. While two moles of periodate were consumed per mole of the product, D-glucose survived in the oxidation. The following structure was, therefore, proposed tentatively for the deacylated jalapin: L-$Rha_f$-(1${\to}$4)-D-$Fuc_p$-(1${\to}$3)-D-$Glu_p$-(1${\to}$11)-jalapinolic acid.

  • PDF

Studies on the Saponins in the Shoot of Aralia Elata (II) -Identification of the Saponins- (두릅나무 순의 Saponin에 관한 연구 (II) - Saponin 의 동정 -)

  • Kim, Young-Hee;Lee, Mee-Kyoung;Lee, Mahn-Jung
    • Journal of the Korean Society of Food Culture
    • /
    • v.5 no.2
    • /
    • pp.243-251
    • /
    • 1990
  • We determined the structure of main saponin which extracted from the shoot of Aralia Elata. The results were as follows. 1. The main aglycons and suger of the total saponins of Nr2 sample were identified as oleanolic acid and hederagenin, and glucose, arabinose and rhamnose. A probable new aglycon was isolated and inferred as 1, 3-methylenedioxy-3-dehydroxyoleanolic acid. 2. One compound of Fh saponin (named as Elatoside $Fh_2$) which was obtained first in this species was elucidated as 3-O-$({\alpha}-L-arabinopyranosyl(1{\rightarrow}2)-{\beta}-D-gluco-pyranosyl)$-28-O-${\beta}-D-glucophyranosyl$ oleanolic acid on the basis of chemical and spectral evidence of IR, $^1H$, $^{13}C-NMR$ and MS.

  • PDF