• 제목/요약/키워드: L-moment method

검색결과 141건 처리시간 0.021초

Weibull -3 및 Wakeby 분포의 L-모멘크법에 의한 설계갈수량 비교분석 (Comparative Analysis of Design Drought Flow by L-Moment in the Weibull-3 and Wakeby distributions)

  • 이순혁;박종화;맹승진;류경식;지호근
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.531-536
    • /
    • 1999
  • This study was carried out to derive optimal design drought flows by the Weibull-3 and Wakeby distributions for the annual drought flows series at seven watersheds along Han, Nagdong, Geum, Yeongsan and Seomjin river systems. L-coefficient of variation , L-skewness and L-kurtosis were calculated by the L-moment ratio respectivley. Parameters were estimated by the Methods o fL-Moments with continuous duration. Design drought flows obtained by Methods of L-Moments using Weibull plotting positions formula in the Weibull-3 and Wakeby distributions were compared by the Relative Mean Errors(RME), Relative Absolute Errors (RAE) and Root Mean Square Errors(RMSE). It has shown that design drought flows by the Wakeby distribution using method of L-moments are much closer to those of the observed data in comparison with those obtained by the Weibull-3 distribution using method of L-moments.

  • PDF

한반도 발생 지진의 지진원 상수 (Source parameters of earthquakes occurred in the Korean Peninsula)

  • 김성균;김병철
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.3-11
    • /
    • 2002
  • Source parameters for forty nine recent earthquakes occurred in and around Korean Peninsula are determined and the relations among them are studied. The corner frequency and seismic moment are estimated from three different methods. The spectral fitting of the source displacement spectrum with the $\omega$-square source model of Brune(1970) and Snoke(1987)'s method are applied to all events and empirical Green's function method for two events are adopted. The source parameters determined in this study show different values depending on the adopted method and on the stations of which seismograms are recorded. It is interpreted that the disagreements principally originate from insufficient consideration of source radiation pattern and attenuation and amplification according to path direction. The corner frequencies and seismic moments are averaged to exclude the directional effects and other source parameters are estimated from the mean corner frequency and seismic moment. The static stress drops estimated in this study tend to be independent of seismic moment or magnitude for events above a certain size. For earthquakes with the size less than about 3.0$\times$10$^{21}$dyne-cm(nearly same as M$_{L}$=3.7), the stress drop tends to decrease with the decreasing moment. This fact suggests a breakdown of scaling law of source parameters below the threshold magnitude. The moment magnitudes calculated from source parameters appear to be slightly larger than the Richter's local magnitudes in the range above M$_{L}$=3.5.3.5.

  • PDF

고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정 (III) - LH-모멘트법과 GIS 기법을 중심으로 - (Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques (III) - On the Method of LH-moments and GIS Techniques -)

  • 이순혁;박종화;류경식;지호근;신용희
    • 한국농공학회지
    • /
    • 제44권5호
    • /
    • pp.41-53
    • /
    • 2002
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. According to the regions and consecutive durations, optimal design rainfalls were derived by the regional frequency analysis for L-moment in the second report of this project. Using the LH-moment ratios and Kolmogorov-Smirnov test, the optimal regional probability distribution was identified to be the Generalized extreme value (GEV) distribution among applied distributions. regional and at-site parameters of the GEV distribution were estimated by the linear combination of the higher probability weighted moments, LH-moment. Design rainfall using LH-moments following the consecutive duration were derived by the regional and at-site analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design rainfall were computed and compared in the regional and at-site frequency analysis. Consequently, it was shown that the regional analysis can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than at-site analysis in the prediction of design rainfall. Relative efficiency (RE) for an optimal order of L-moments was also computed by the methods of L, L1, L2, L3 and L4-moments for GEV distribution. It was found that the method of L-moments is more effective than the others for getting optimal design rainfall according to the regions and consecutive durations in the regional frequency analysis. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.

6분력 힘/모멘트 발생장치 개발 및 평가 (Development and Evaluation of 6-components Force/Moment Generator)

  • 정홍식;주진원
    • 대한기계학회논문집A
    • /
    • 제40권7호
    • /
    • pp.621-628
    • /
    • 2016
  • 본 논문에서는 다축 로드셀의 특성을 평가할 수 있는 실하중 6분력 힘 및 모멘트 발생장치를 개발하였다. 정확한 힘과 모멘트를 발생시키고 각 분력 간의 상호 작용 오차를 최소화하기 위해 몇 가지 새로운 방법을 도입하였다. 제작된 힘/모멘트 발생장치의 신뢰성을 검증하기 위하여 상용 토크셀과 본 논문에서 고안하여 제작한 양단 고정보 형태의 측정장치를 이용하여 모멘트 발생 방법을 평가하고 하중 간의 상호 측정을 수행하였다.

Weibull-3 분포모형의 모멘트법 및 L-모멘트법에 의한 홍수빈도비교분석 (Comparative Analysis of Flood Frequncy by Moment and L-moment in Weibull-3 distribution)

  • 이순혁;맹승진;송기헌;류경식;지호근
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.331-337
    • /
    • 1998
  • This study was carried out to derive optimal design floods by Weibull-3 distribution with the annual maximum series at seven watersheds along Man, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was acknowledged by the tests of Independence, Homogeneity, detection of Outliers. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in Weibull-3 distribution were compared by the rotative mean error and relative absolute error. It has shown that design floods derived by the method of L-moments using Weibull plotting position formula in Weibull-3 distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions in view of relative mean and relative absolute error.

  • PDF

Gamma 및 비Gamma군 분포모형에 의한 강우의 지점 및 지역빈도 비교분석 (I) (Comparative Analysis of Regional and At-site Analysis for the Design Rainfall by Gamma and Non-Gamma Family (I))

  • 류경식;이순혁
    • 한국농공학회논문집
    • /
    • 제46권4호
    • /
    • pp.25-36
    • /
    • 2004
  • This study was conducted to derive the design rainfall by the consecutive duration using the at-site frequency analysis. Using the errors, K-S tests and LH-moment ratios, Log Pearson type 3 (LP3) and Generalized Extreme Value (GEV) distributions of Gamma and Non-Gamma Family, respectively were identified as the optimal probability distributions among applied distributions. Parameters of GEV and LP3 distributions were estimated by the method of L and LH-moments and the Indirect method of moments respectively. Design rainfalls following the consecutive duration were derived by at-site frequency analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE) and relative efficiency (RE) in RRMSE for the design rainfall derived by at-site analysis in the observed and simulated data were computed and compared. It has shown that at-site frequency analysis by GEV distribution using L-moments is confirmed as more reliable than that of GEV and LP3 distributions using LH-moments and Indirect method of moments in view of relative efficiency.

L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정 (II)- LH-모멘트법을 중심으로 - (Estimation of Drought Rainfall by Regional Frequency Analysis Using L and LH-Moments (II) - On the method of LH-moments -)

  • 이순혁;윤성수;맹승진;류경식;주호길;박진선
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.27-39
    • /
    • 2004
  • In the first part of this study, five homogeneous regions in view of topographical and geographically homogeneous aspects except Jeju and Ulreung islands in Korea were accomplished by K-means clustering method. A total of 57 rain gauges were used for the regional frequency analysis with minimum rainfall series for the consecutive durations. Generalized Extreme Value distribution was confirmed as an optimal one among applied distributions. Drought rainfalls following the return periods were estimated by at-site and regional frequency analysis using L-moments method. It was confirmed that the design drought rainfalls estimated by the regional frequency analysis were shown to be more appropriate than those by the at-site frequency analysis. In the second part of this study, LH-moment ratio diagram and the Kolmogorov-Smirnov test on the Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distributions were accomplished to get optimal probability distribution. Design drought rainfalls were estimated by both at-site and regional frequency analysis using LH-moments and GEV distribution, which was confirmed as an optimal one among applied distributions. Design rainfalls were estimated by at-site and regional frequency analysis using LH-moments, the observed and simulated data resulted from Monte Carlotechniques. Design drought rainfalls derived by regional frequency analysis using L1, L2, L3 and L4-moments (LH-moments) method have shown higher reliability than those of at-site frequency analysis in view of RRMSE (Relative Root-Mean-Square Error), RBIAS (Relative Bias) and RR (Relative Reduction) for the estimated design drought rainfalls. Relative efficiency were calculated for the judgment of relative merits and demerits for the design drought rainfalls derived by regional frequency analysis using L-moments and L1, L2, L3 and L4-moments applied in the first report and second report of this study, respectively. Consequently, design drought rainfalls derived by regional frequency analysis using L-moments were shown as more reliable than those using LH-moments. Finally, design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were derived by regional frequency analysis using L-moments, which was confirmed as a more reliable method through this study. Maps for the design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were accomplished by the method of inverse distance weight and Arc-View, which is one of GIS techniques.

Wakeby 및 Kappa 분포의 L-모멘트법에 의한 홍수빈도분석 (Flood Frequency Analysis by Wakeby and Kappa Distributions Using L-Moments)

  • 맹승진;이순혁;이현규;류경식;송기현
    • 한국농공학회논문집
    • /
    • 제48권5호
    • /
    • pp.17-27
    • /
    • 2006
  • The objective of this study is to induce the design floods by the methodology of L-moment including test of homogeneity, independence and outlier of the data of annual maximum flood flows for 12 water level gaging stations of South Korea. To select appropriate distribution of the data for annual maximum flood flows, the distributions of Wakeby and Kappa are applied and the appropriateness is judged by Kolmogorov-smirnov (K-S) test. The parameters of selected Wakeby and Kappa distributions are calculated by the method of L-moment and the design floods are induced. Through the comparative analysis using the relative root mean square errors (RRMSE) and relative absolute errors (RAE) of design floods, the result shows that the design floods by Wakeby distribution are closer to the observed data than those obtained by the Kappa distribution.

Comparison of Parameter Estimation Methods in A Kappa Distribution

  • 정보윤;박정수
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 PROCEEDINGS OF JOINT CONFERENCEOF KDISS AND KDAS
    • /
    • pp.163-169
    • /
    • 2006
  • This paper deals with the comparison of parameter estimation methods in a 3-parameter Kappa distribution which is sometimes used in flood frequency analysis. The method of moment estimation(MME), L-moment estimation(L-ME), and maximum likelihood estimation(MLE) are applied to estimate three parameters. The performance of these methods are compared by Monte-carlo simulations. Especially for computing MME and L-ME, ike dimensional nonlinear equations are simplied to one dimensional equation which is calculated by the Newton-Raphson iteration under constraint. Based on the criterion of the mean squared error, the L-ME is recommended to use for small sample size $(n\leq100)$ while MLE is good for large sample size.

  • PDF

L-모멘트 및 LH-모멘트 기법에 의한 적정 설계홍수량의 유도( I ) - L-모멘트법을 중심으로 - (Derivation of Optimal Design Flood by L-Moments and LB-Moments ( I ) - On the method of L-Moments -)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.45-57
    • /
    • 1998
  • This study was conducted to derive optimal design floods by Generalized Extreme Value (GEV) distribution for the annual maximum series at ten watersheds along Han, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was established by the tests of Independence, Homogeneity, detection of Outliers. L-coefficient of variation, L-skewness and L-kurtosis were calculated by L-moment ratio respectively. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in GEV distribution were compared by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE). The results were analyzed and summarized as follows. 1. Adequacy for the analysis of flood data was acknowledged by the tests of Independence, Homogeneity and detection of Outliers. 2. GEV distribution used in this study was found to be more suitable one than Pearson type 3 distribution by the goodness of fit test using Kolmogorov-Smirnov test and L-Moment ratios diagram in the applied watersheds. 3. Parameters for GEV distribution were estimated using Methods of Moments and L-Moments. 4. Design floods were calculated by Methods of Moments and L-Moments in GEV distribution. 5. It was found that design floods derived by the method of L-Moments using Weibull plotting position formula in GEV distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions from the viewpoint of Relative Mean Errors and Relative Absolute Errors.

  • PDF