• 제목/요약/키워드: L-glutamate

검색결과 333건 처리시간 0.022초

황칠나무 추출물의 고초균 발효물로 제조된 가쓰오부시 단백가수분해물의 Lactobacillus plantarum 발효를 통한 고농도 GABA 생산 (Production of highly enriched GABA through Lactobacillus plantarum fermentation of katsuobushi protein hydrolyzate made from Dendropanax morbiferus extract fermented by Bacillus subtilis )

  • 안유정;성낙주;이삼빈
    • 한국식품저장유통학회지
    • /
    • 제30권1호
    • /
    • pp.146-154
    • /
    • 2023
  • 참치액 소스를 가공할 때 가쓰오부시(가다랑어 훈연 숙성) 열수 추출물을 주원료로 사용하며, 이때 부산물로 생산되는 가쓰오부시 단백질을 이용하여 가수 분해산물인 peptide 강화소재를 제조하며 이를 젖산발효를 통한 기능성 물질 GABA가 증진된 기능성 발효소재를 개발하였다. 황칠나무 추출물 25%에 glucose 2%, skim milk 1%를 첨가한 제한배지에서 1차 고초균 발효 1일 동안 B. subtilis HA의 생균수는 8.83 log CFU/mL로 크게 증가하였고, pH 7.53과 산도 0.06%를 나타내었다. 고초균 발효물의 protease 활성은 발효 전 1.55 unit/mL에서 발효 후 102.22 unit/mL로 크게 증가하였고, 이에 가쓰오부시 부산물을 10% 첨가하여 60℃에서 3시간 동안 단백질 분해한 결과 tyrosine 함량이 분해 전 72.94 mg%에서 분해 3시간 후 156.85 mg%로 2배 이상 증가하였다. 고초균 발효물을 이용하여 가수분해시킨 가쓰오부시 단백질 분해물에 추가적으로 MSG 10%, glucose 3%, yeast extract 0.5%를 첨가하여 정치배양으로 젖산균 발효를 수행하였다. L. plantarum KS2020의 생균수는 0일 차 7.65 log CFU/mL에서 발효 7일 차 9.33 log CFU/mL까지 크게 증가하였고, B. subtilis HA의 생균수는 0일 차 5.98 log CFU/mL에서 1일 차부터 생균수가 검출되지 않았다. 젖산균 발효물의 pH 및 산도의 변화는 0일 차 pH 7.14, 산도 0.19%에서 1일 차에 pH는 5.77로 감소하고 산도는 1.92%로 증가한 후 발효 3일 차에 산도는 0% 및 pH 8.00 이상을 나타내었다. 젖산발효 1일 차부터 GABA의 전환이 보이면서 발효 3일 차에 고농도 GABA 생성을 나타내었다. GABA 및 glutamic acid의 함량을 HPLC로 분석한 결과, GABA의 함량은 3,139.58 mg/100 g으로 매우 높은 값을 나타냈으며, glutamic acid의 함량은 83.44 mg/100 g이었다. 결과적으로 황칠나무 추출물을 이용한 고초균 발효물을 효소원으로 이용하여 가쓰오부시 부산물의 단백질을 효과적으로 고온에서 단기간에 분해하여 peptide를 생성시켰으며, 연속적으로 젖산발효를 통해 약 3.1%의 GABA가 생성되었다. 최종 가쓰오부시 단백질의 가수분해물을 이용한 젖산균 발효물은 산도가 0%이며 풍미, probiotics, peptides, 고농도 GABA를 함유한 복합 기능성 발효소재로써 소스 등 다양한 식품의 건강소재로 활용이 기대된다.

메밀 및 다시마를 포함하는 유산균 발효액의 생리적 기능 (Physiological Functions of Lactic Acid Bacteria Fermented Broth Containing Fagopyrum esculentum and Saccharina japonica)

  • 전숭종;김애령;이종환
    • 생명과학회지
    • /
    • 제25권10호
    • /
    • pp.1110-1114
    • /
    • 2015
  • 본 연구에서는 각종 곡물(메밀, 귀리, 검은깨, 검은콩, 율피, 현미, 보리, 들깨, 밀) 및 다시마를 포함하는 Lactobacillus brevis AR1의 발효물 중에서 섬유아세포의 콜라겐 합성을 촉진하는 화장품 소재를 조사하였다. 그결과 메밀 및 다시마를 포함하는 Lb. brevis AR1의 발효물을 처리한 섬유아세포에서 효과적으로 콜라겐 합성이 증가하였다. 특히, 다시마 함유 Lb. brevis AR1의 발효물은 양성 대조구인 β-glucan 보다 높은 콜라겐 합성능을 나타내었다. Lb. brevis AR1은 메밀 또는 다시마와 함께 4% MSG를 첨가한 배지에서 72시간 배양한 후, 180 mM의 GABA를 생산하여 84.5%의 GABA 전환율을 나타내었다. 메밀 및 다시마를 포함하는 Lb. brevis AR1의 발효물은 생쥐 피부의 염증 반응을 감소시키는 효과를 가졌고 섬유아세포에서는 세포 독성을 나타내지 않았다. 이 결과들은 메밀 및 다시마를 포함하는 Lb. brevis AR1의 발효물이 피부 주름 개선과 항염증 효과를 가지는 기능성 화장품 소재로서 사용될 수 있다는 것을 나타낸다.

Determination of Optimized Growth Medium and Cryoprotective Additives to Enhance the Growth and Survival of Lactobacillus salivarius

  • Yeo, Soyoung;Shin, Hee Sung;Lee, Hye Won;Hong, Doseon;Park, Hyunjoon;Holzapfel, Wilhelm;Kim, Eun Bae;Huh, Chul Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권5호
    • /
    • pp.718-731
    • /
    • 2018
  • The beneficial effects of lactic acid bacteria (LAB) have been intensively investigated in recent decades with special focus on modulation of the host intestinal microbiota. Numerous discoveries of effective probiotics are driven by a significantly increasing demand for dietary supplements. Consequently, technological advances in the large-scale production and lyophilization are needed by probiotic-related industries for producing probiotic LAB for commercial use. Our study had a dual objective, to determine the optimum growth medium composition and to investigate appropriate cryoprotective additives (CPAs) for Lactobacillus salivarius, and compare its responses with other Lactobacillus species. The one-factor-at-a-time method and central composite design were applied to determine the optimal medium composition for L. salivarius cultivation. The following composition of the medium was established (per liter): 21.64 g maltose, 85 g yeast extract, 1.21 ml Tween 80, 6 g sodium acetate, $0.2g\;MgSO_4{\cdot}7H_2O$, $0.02g\;MnSO_4{\cdot}H_2O$, $1g\;K_2HPO_4$, $1.5g\;KH_2PO_4$, $0.01g\;FeSO_4{\cdot}7H_2O$, and 1 g sodium citrate. A cryoprotective additive combination comprising 10% (w/v) skim milk and 10% (w/v) sucrose supplemented with 2.5% (w/v) sodium glutamate was selected for L. salivarius, and its effectiveness was confirmed using culture-independent methods in the freeze-dried cells of the Lactobacillus strains. In conclusion, the optimized medium enhanced the species-specific cultivation of L. salivarius. On the other hand, the cryoprotective effects of the selected CPA mixture may also be dependent on the bacterial strain. This study highlights the necessity for precise and advanced processing techniques for large-scale production of probiotics in the food and feed industries.

Substitution of Glycine 275 by Glutamate (G275E) in Lipase of Bacillus stearothermophilus Affects Its Catalytic Activity and Enantio- and Chain Length Specificity

  • Kim, Myung-Hee;Kim, Hyung-Kwoun;Oh, Byung-Chul;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.764-769
    • /
    • 2000
  • The lipase gene(lip) from Bacillus stearothermophilus was recombined in vitro by utilizing the DNA shuffling technique. After four rounds of shuffling, transformation, and screening based on the initial rate of clear zone formation on a tricaprylin plate, a clone (M10) was isolated, the cell extract of which showed about 2.8-fold increased lipase activity. The DNA sequence of the mutant lipase gene (m10) showed 3 base changes, resulting in two cryptic mutations and one amino acid substitution: S113($AGC{\rightarrow}AGT$), L252 ($TTG{\rightarrow}TTA$), and G275E ($GGA{\rightarrow}GAA$). SDS-PAGE analysis revealed that the increased enzyme activity observed in M10 was partly caused by high expression of the m10 lipase gene. The amount of the expressed G275E lipase was estimated to comprise as much as 41% of the total soluble proteins of the cell. The maximum velocity ($V_{max}$) of the purified mutant enzyme for the hydrolysis of olive oil was measured to be 3,200 U/mg, which was 10% higher than that of the parental (WT) lipase (2,900 U/mg). Its optimum temperature for the hydrolysis of olive oil was $68^{\circ}C$ and it showed a typical $Ca^{2+}$-dependent thermostability, properties fo which were the same as those of the WT lipase. However, the mutant enzyme exhibited a high enantiospecificity towards (S)-naproxen compared with the WT lipase. In addition, it showed increased hydrolytic activity towards triolein, tricaprin, tricaprylin, and tricaproin.

  • PDF

소아 연령군에서의 냉각-산소화-희석-혈심정지액을 이용한 심근 보호에 대한 임상적 고찰 (Clinical Trial of Myocardial Protection using Cold Oxygenated Diluted Blood Cardioplegia in Child Age)

  • 이정렬;김용진
    • Journal of Chest Surgery
    • /
    • 제25권3호
    • /
    • pp.211-219
    • /
    • 1992
  • Hypothermic cardioplegia is a well established method to optimize myocardial preservation during ischemic arrest, and it has been demonstrated that oxygenation of crystalloid cardioplegic solutions markedly enhances myocardial protection, The addition of a small amount of red blood cells to a crystalloid cardioplegic solutions improves capillary perfusion. Considering these results, we changed our cardioplegic solution from cold oxygenated crystalloid[Group 2] to cold oxygenated diluted blood[Group 1]. In this investigation, we examined the effects of two hypothermic potassium cardioplegic solutions on myocardial preservation in 50 patients[30 of Group 1 and 20 of Group 2] of child age group. Factors considered preoperatively included age, sex, body weight, preoperative diagnosis, and they showed no statistical differences, Intraoperative factors considered included duration of cardiopulmonary bypass, duration of aortic occlusion, operative mortality, which also revealed no statistically significant differences, We measured the serum levels of GOT[glutamate oxaloacetate transaminase] and CPK [creatine phosphokinase] during the first two days postoperatively, which, in both groups, showed significantly higher values until postoperative 1 day, and decreasing tendancy thereafter, however we failed to find any significant difference between two groups regarding the serum levels of those enzymes each day. Time for extubation and use of inotropics also revealed no significant differences. Defibrillation was needed less in Group 1 than in Group 2[p<0.05], and one case of supraventricular tachyarrhythmia occured in Group l. We conclude that cold oxygenated diluted blood cardioplegia provides no less preservation than does an oxygenated crystalloid cardioplegic solution in child age group.

  • PDF

A Possible Role of Kainate Receptors in C2C12 Skeletal Myogenic Cells

  • Park, Jae-Yong;Han, Jae-Hee;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.375-379
    • /
    • 2003
  • $Ca^{2+}$ influx appears to be important for triggering myoblast fusion. It remains, however, unclear how $Ca^{2+}$ influx rises prior to myoblast fusion. Recently, several studies suggested that NMDA receptors may be involved in $Ca^{2+}$ mobilization of muscle, and that $Ca^{2+}$ influx is mediated by NMDA receptors in C2C12 myoblasts. Here, we report that other types of ionotropic glutamate receptors, non-NMDA receptors (AMPA and KA receptors), are also involved in $Ca^{2+}$ influx in myoblasts. To explore which subtypes of non-NMDA receptors are expressed in C2C12 myogenic cells, RT-PCR was performed, and the results revealed that KA receptor subunits were expressed in both myoblasts and myotubes. However, AMPA receptor was not detected in myoblasts but expressed in myotubes. Using a $Ca^{2+}$ imaging system, $Ca^{2+}$ influx mediated by these receptors was directly measured in a single myoblast cell. Intracellular $Ca^{2+}$ level was increased by KA, but not by AMPA. These results were consistent with RT-PCR data. In addition, KA-induced intracellular $Ca^{2+}$ increase was completely suppressed by treatment of nifedifine, a L-type $Ca^{2+}$ channel blocker. Furthermore, KA stimulated myoblast fusion in a dose-dependent manner. CNQX inhibited not only KA-induced myoblast fusion but also spontaneous myoblast fusion. Therefore, these results suggest that KA receptors are involved in intracellular $Ca^{2+}$ increase in myoblasts and then may play an important role in myoblast fusion.

Analysis of Catalases from Photosynthetic Bacterium Rhodospirillum rubrum Sl

  • Lim, Hee-Kyung;Kim, Young-Mi;Lee, Dong-Heon;Kahng, Hyung-Yeel;Oh, Duck-Chul
    • Journal of Microbiology
    • /
    • 제39권3호
    • /
    • pp.168-176
    • /
    • 2001
  • Five different types of catalases from photosynthetic bacterium Rhodospirillum rubrum S1 grown aerobically in the dark were found in this study, and designated Catl (350 kDa), Cat2 (323 kDa), Cat3 (266 kDa), Cat4 (246 kDa), and Cat5 (238 kDa). Analysis of native PAGE revealed that Cat2, Cat3, and Cat4 were also produced in the cells anaerobically grown in the light. It is notable that only Cat2 was expressed much more strongly in response to the anaerobic condition. Enzyme activity staining demonstrated that Cat3 and Cat4 had bifunctional catalase-peroxidase activities, while Catl, Cat2, and Cat5 were typical monofunctional catalases. S1 cells grown aerobically in the presence of malate as the sole source of carbon exhibited an apparent catalase Km value of 10 mM and a Vmax of about 705 U/mg protein at late stationary growth phase. The catalase activity of Sl cells grown in the anaerobic environment exhibited a much lower Vmax of about 109 U/mg protein at late logarithmic growth phase. The catalytic activity was stable in the broad range of temperatures (30$\^{C}$-60$\^{C}$), and pH (6.0-10.0). R. rubrum S1 was much more resistant to H$_2$O$_2$in the stationary growth phase than in the exponential growth phase regardless of growth conditions. Cells of stationary growth phase treated with 15 mM H$_2$O$_2$for 1 h showed 3-fold higher catalase activities than the untreated cells. In addition, L-glutamate induced an 80-fold increase in total catalase activity of R. rubrum S1 compared with magic acid. Through fraction analyses of S1 cells, Cat2, Cat3, Cat4 and Cat5 were found in both cytoplasm and periplasm, while Catl was localized only in the cytoplasm.

  • PDF

Anti-oxidative Effect of a Protein from Cajanus indicus L against Acetaminophen-induced Hepato-nephro Toxicity

  • Ghosh, Ayantika;Sil, Parames C.
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.1039-1049
    • /
    • 2007
  • Overdoses of acetaminophen cause hepato-renal oxidative stress. The present study was undertaken to investigate the protective effect of a 43 kDa protein isolated from the herb Cajanus indicus, against acetaminophen-induced hepatic and renal toxicity. Male albino mice were treated with the protein for 4 days (intraperitoneally, 2 mg/kg body wt) prior or post to oral administration of acetaminophen (300 mg/kg body wt) for 2 days. Levels of different marker enzymes (namely, glutamate pyruvate transaminase and alkaline phosphatase), creatinine and blood urea nitrogen were measured in the experimental sera. Intracellular reactive oxygen species production and total antioxidant activity were also determined from acetaminophen and protein treated hepatocytes. Indices of different antioxidant enzymes (namely, superoxide dismutase, catalase, glutathione-S-transferase) as well as lipid peroxidation end-products and glutathione were determined in both liver and kidney homogenates. In addition, Cytochrome P450 activity was also measured from liver microsomes. Finally, histopathological studies were performed from liver sections of control, acetaminophen-treated and protein pre- and post-treated (along with acetaminophen) mice. Administration of acetaminophen increased all the serum markers and creatinine levels in mice sera along with the enhancement of hepatic and renal lipid peroxidation. Besides, application of acetaminophen to hepatocytes increased reactive oxygen species production and reduced the total antioxidant activity of the treated hepatocytes. It also reduced the levels of antioxidant enzymes and cellular reserves of glutathione in liver and kidney. In addition, acetaminophen enhanced the cytochrome P450 activity of liver microsomes. Treatment with the protein significantly reversed these changes to almost normal. Apart from these, histopathological changes also revealed the protective nature of the protein against acetaminophen induced necrotic damage of the liver tissues. Results suggest that the protein protects hepatic and renal tissues against oxidative damages and could be used as an effective protector against acetaminophen induced hepato-nephrotoxicity.

팽이 및 수경인삼 분말 및 요구르트 발효에 의한 γ-Aminobutyric acid (GABA)의 전환효율 증진 (Effect of Conversion Rate of γ-Aminobutyric acid (GABA) by Yogurt Fermentation with Addition of Nanoparticle Winter Mushroom and Hydroponic Ginseng)

  • 신평균;김희정;유영복;공원식;오연이
    • 한국버섯학회지
    • /
    • 제13권4호
    • /
    • pp.334-337
    • /
    • 2015
  • 팽이버섯 내에 존재하는 GAD 효소를 발효를 통해 활성화 시켜 MSG를 GABA로의 전환율을 높이고자 하였다. 효과적인 고농도 GABA를 생산하기 위해 나노분말 팽이버섯에다가 수경재배한 인삼을 첨가하여 야쿠르트발효기에서 발효한 결과 GABA 전환율은 팽이나노인삼분말 발효군(88%) > 팽이분말 발효군(52%) > 팽이나노분말 발효군(44%) 순으로 나타났다. 이러한 결과는 MSG를 기질로 첨가하는 식품에서 활용할 가치가 있으리라 사료된다.

Mutant Presenilin 2 Increases Acetylcholinesterase Activity in Neuronal Cells

  • Nguyen Hong Nga;Hwang Dae Youn;Kim Young Kyu;Yoon Do Young;Kim Jae Hwa;Lee Moon Soon;Lee Myung Koo;Yun Yeo Pyo;Oh Ki Wan;Hong Jin Tae
    • Archives of Pharmacal Research
    • /
    • 제28권9호
    • /
    • pp.1073-1078
    • /
    • 2005
  • A presenilin 2 mutation is believed to be involved in the development of Alzheimer's disease. In addition, transgenic mice with a presenilin 2 mutation have been reported to have learning and memory impairments. In this study, exposing PC12 cells expressing mutant presenilin 2 to $50{\mu}M\;A{\beta}_{25-35},\;30mM$ L-glutamate and $50{\mu}M\;H_2O_2$ caused a significant increase in acetylcholine esterase activity. An in vivo study revealed high levels of this enzyme activity in the mutant presenilin 2 transgenic brains compared with the wild type presenilin 2 transgenic and non-transgenic samples. These results suggest that a mutant presenilin 2-induced neurodegeneration in Alzheimer's disease might be involved in the increase in acetylcholinesterase activity. These findings might help in the development of an appropriate therapeutic intervention targeting mutant presenilin 2-induced Alzheimer's disease.