• Title/Summary/Keyword: L-carnosine

Search Result 36, Processing Time 0.025 seconds

The effect of L-carnosine on the rheological characteristics of erythrocytes incubated in glucose media

  • Nam, Jeong-Hun;Kim, Chang-Beom;Shin, Se-Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.103-108
    • /
    • 2009
  • Hemorheological properties are easily modified by glucose-induced oxidation and glycation. Carnosine, a naturally occurring dipeptide ($\beta$-alanyl-LFull-size image-histidine), has been recently proposed to act as an antioxidant as well as a free-radical scavenger. In the present study, we investigate its protective and rejuvenating effects in erythrocytes that are exposed to glucose-rich plasma. Erythrocytes that were incubated in glucose solutions were treated with different concentrations of carnosine and for different incubation times. Their hemorheological alterations were examined. The results reveal that the presence of carnosine effectively prevented these rheological alterations in a concentration-dependent manner in glucose-rich media. It is proposed that moderate concentrations of carnosine might be further explored as potential therapeutic agents for pathologies that involve hemorheological modification.

Effects of ${\alpha}$-lipoic acid and L-carnosine supplementation on antioxidant activities and lipid profiles in rats

  • Kim, Mi-Young;Kim, Eun-Jin;Kim, Young-Nam;Choi, Chang-Sun;Lee, Bog-Hieu
    • Nutrition Research and Practice
    • /
    • v.5 no.5
    • /
    • pp.421-428
    • /
    • 2011
  • ${\alpha}$-Lipoic acid and L-carnosine are powerful antioxidants and are often used as a health supplement and as an ergogenic aid. The objective of this study was to investigate the effects of ${\alpha}$-lipoic acid and/or L-carnosine supplementation on antioxidant activity in serum, skin, and liver of rats and blood lipid profiles for 6 weeks. Four treatment groups received diets containing regular rat chow diet (control, CON), 0.5% ${\alpha}$-lipoic acid (ALA), 0.25% ${\alpha}$-lipoic acid+0.25% L-carnosine (ALA+LC), or 0.5% L-carnosine (LC). Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and lipid peroxidation products, malondialdehyde (MDA) concentrations, were analyzed in serum, skin, and liver. Blood lipid profiles were measured, including triglycerides (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C). Skin and liver SOD activities of the ALA and LC groups were higher than those of the CON group (P<0.05), but serum SOD activity was higher only in the LC group compared to that in the CON group (P<0.05). Additionally, only liver GSH-Px activity in the LC group was higher than that of the CON and the other groups. Serum and skin MDA levels in the ALA and LC groups were lower than those in the CON group (P<0.05). Serum TG and TC in the ALA and ALA+LC groups were lower than those in the CON and LC groups (P<0.05). The HDL-C level in the LC group was higher than that in any other group (P<0.05). LDL-C level was lower in the ALA+LC and LC groups than that in the CON group (P<0.05). Thus, ${\alpha}$-lipoic acid and L-carnosine supplementation increased antioxidant activity, decreased lipid peroxidation in the serum, liver, and skin of rats and positively modified blood lipid profiles.

Antiglycemic Effect of Carnosine in Diabetic Mice (당뇨 마우스에서 카르노신의 혈당강하 효과)

  • Hue, Jin-Joo;Kim, Jong-Soo;Kim, Jun-Hyeong;Nam, Sang-Yoon;Yun, Young-Won;Jeong, Jae-Hwang;Lee, Beom-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.4
    • /
    • pp.391-397
    • /
    • 2009
  • Carnosine is a dipeptide ($\beta$-alanyl-L-histidine) found in mammalian brain, eye, olfactory bulb and skeletal muscle at high concentrations. Its biological functions include antioxidant and anti-glycation activities. The objectives of this study were to investigate anti-diabetic effects of carnosine as determined by blood glucose levels in glucose tolerance test (GTT) and insulin tolerance test (ITT), insulin level and serum biochemical and lipid levels in male C57BL/6J db/db mice. There were five experimental groups including normal (C57BL/6J), control (vehicle), and three groups of carnosine at doses of 6, 30, and 150 mg/kg b.w. Carnosine was orally administered to the diabetic mice everyday for 8 weeks. There was no significant difference in body weight changes in carnosine-treated groups compared to the control. The treatments of carnosine significantly decreased the blood glucose level in the diabetic mice compared with the control (p < 0.05) after 5 weeks. The treatments of carnosine also significantly decreased the blood glucose levels in GTT and ITT and glycosylated hemoglobin (HbA1c), compared with the control (p < 0.05). Carnosine at the dose of 6 mg/kg significantly decreased the serum insulin level compared to the control (p < 0.05). Carnosine significantly increased total proteins but significantly decreased lactate dehydrogenase and blood urea nitrogen compared with the control (p < 0.05). Carnosine also significantly decreased glucose, LDL, and triglyceride in the serum of diabetic mice compared to the control (p < 0.05). These results suggest that carnosine has a hypoglycermic effect resulting from reduction of glucose and lipid levels and that high carnosine-containing diets or drugs may give a benefit for controlling diabetes mellitus in humans.

Effect of Dietary Supplementation of Blood Meal and Additional Magnesium on Carnosine and Anserine Concentrations of Pig Muscles

  • Park, Se Won;Kim, Chan Ho;Kim, Jong Woong;Shin, Hye Seong;Paik, In Kee;Kil, Dong Yong
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.252-256
    • /
    • 2014
  • The objective of this study was to investigate the effect of dietary supplementation of blood meal as a source of L-histidine, and the addition of magnesium (Mg) as a catalyst of carnosine synthetase for the carnosine and anserine concentrations of pig muscles (longissimus dorsi, LD and vastus intermedius, VI). A total of twenty-four pigs with an average body weight of $60.2{\pm}4.2$ kg were randomly allotted to one of three dietary treatments (eight replicates), during 56 d of the feeding trial. Dietary treatments included: (1) Basal: basal diet; (2) BM: 95% basal diet + 5% blood meal; and (3) BM+Mg: 94.8% basal diet + 5% blood meal + 0.2% MgO (60% Mg). Results indicated that drip loss in the LD was less (p<0.05) for meat with BM+Mg treatment than that with Basal treatment, but the values for BM treatment did not differ from those of the other two treatment groups. The concentrations of carnosine in the LD were increased by 10.0% in both BM and BM+Mg treatment groups over the Basal treatment group (significance not verified). The concentrations of carnosine and anserine in the VI were not affected by the dietary treatments. Inclusion of additional Mg in diets had no effect on carnosine and anserine concentrations in the LD and VI. In conclusion, dietary supplementation of blood meal could be a potential method of fortifying the pork with carnosine. Inclusion of additional Mg in the diets containing blood meal had no benefit on carnosine and anserine depositions in pig muscles.

Antioxidant Effect of Histidine Containing Low Molecular Weight Peptide Isolated from Skipjack Boiled Extract (가다랑어 자숙액에서 분리한 히스티딘 함유 저분자 펩타이드의 항산화 효과)

  • Cheong, Hyo-Sook
    • Korean journal of food and cookery science
    • /
    • v.23 no.2 s.98
    • /
    • pp.221-226
    • /
    • 2007
  • This study was carried out to investigate the optimun conditions for the isolation of low molecular weight peptides containing histidine, and to evaluate the antioxidant effects of skipjack boiled extracts(SBE). The results are summarized as follows : L-histidine contents of the ordinary muscle and dark muscle extracts were $ 83.1{\pm}1.75{\mu}M/g\;and\;11.0{\pm}2.39\;{\mu}M/g$, respectively. The L-histidine level of the dark muscle was much lower than that of ordinary muscle in the SBE. The extracts were treated with alcalase and neutrase under different pH levels, temperatures, and times. The optimum hydrolysis conditions of SBE were pH 7.0 and a $60^{\circ}$C temperature for 2 hr in the batch reactor, which hydrolyzed 63% of the SBE. HPLC analysis showed a removing effect of the ultrafiltration permeate (UFP) to high molecular weight impurities in SBE. SBE and pure carnosine participated as inhibiting agents to, which was confirmed through the autoxidation processing of linoleic acid. UFP treatment improved the inhibiting ability of SBE to the autoxidation of linoleic acid. The reducing power of the UFP-treated ordinary muscle extracts were 10-fold higher than the dark muscle extracts, and 0.7-fold higher than 20 mM pure carnosine. The UFP-treated ordinary muscle extracts had greater reducing power activity than pure carnosine. The scavenging activities on DPPH radical of the different treated-SBE and pure carnosine were also investigated. Scavenging activities of the ordinary and dark muscle extracts and the pure carnosine were 90%, 70%, and 45%, respectively. In summary, Skipjack boiled extracts (SBE) demonstrated that low molecular weight peptides containing histidine are capable of inhibiting lipid oxidation. They also possessed effective abilities as free radical scavengers and reducing agents, and these activities may increase with increasing concentrations.

Effects of Carnosine and Related Compounds on Monosaccharide Autoxidation and $H_2O_2$ Formation

  • Lee, Beom-Jun;Kang, Kyung-Sun;Nam, Sang-Yoon;Park, Jae-Hak;Lee, Yong-Soon;Yun, Young-Won;Cho, Myung-Haing
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.251-261
    • /
    • 1999
  • The effects of carnosine and related compounds (CRCs) including anserine, homocarnosine, histidine, and ${\beta}-alanine$ on monosaccharide autoxidation and $H_2O_2$ formation were investigated. The incubation of CRCs with D-glucose, D-glucosamine, and D, L-glyceraldehyde at $37^{\circ}C$ increased the absorption maxima at 285 nm, 273 nm, and $290{\sim}330$ nm, respectively. D, L-glyceraldehyde was the most reactive sugar with CRCs. The presence of copper strongly stimulated the reaction of carnosine and anserine with D-glucose or D-glucosamine. Carnosine and anserine stimulated $H_2O_2$ formation from D-glucose autoxidation in a dose-dependent manner in the presence of 10 ${\mu}M$ Cu (II). The presence of human serum albumin (HSA) decreased their effect on $H_2O_2$ formation. Carnosine and anserine has a biphasic effect on ${\alpha}-ketoaldehyde$ formation from glucose autoxidation. CRCs inhibited glycation of HSA as determined by hydroxymethyl furfural, lysine residue with free ${\varepsilon}-amino$ group, and fructosamine assay. These results suggest that CRCs may be protective against diabetic complications by reacting with sugars and protecting glycation of protein.

  • PDF

Changes in Meat Quality and Natural Di-peptides in the Loin and Ham Cuts of Korean Native Black Pigs during Cold Storage (재래 흑돼지 등심과 뒷다리살의 냉장저장기간 동안 품질과 di-peptides 함량 변화)

  • Kim, Dongwook;Gil, Juae;Kim, Hee-Jin;Kim, Hyun-Wook;Park, Beom-Young;Lee, Sung-Ki;Jang, Aera
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1477-1485
    • /
    • 2013
  • The aim of this study was to evaluate changes in the meat quality and natural di-peptide (carnosine and anserine) content in the loin and ham cuts of female, Korean Native Black Pigs (KNBP) during cold storage for 10 days. The pH value of the loin and the ham cuts increased with an increase in the number of storage days. The lightness ($L^*$) of the loin cuts did not show any significant difference; however, the lightness of the ham cuts was decreased at storage day 10 (p<0.05). The redness ($a^*$) of the ham was higher than the redness of the loin (p<0.05) during the entire 10-days of storage. The water holding capacity of the loin was decreased from 78.5% to 67.9% during storage (p<0.05). The total number of microorganisms and coliforms was increased in both the loin and the ham during storage, and the initial total microbial contamination was higher in the ham cut (5.16 log CFU/g) than it was in the loin cut (4.87 log CFU/g). The carnosine content of the loin and the ham was in the range of 1.12-1.35 mg/ml and no significant difference was found between those two pork cuts. The anserine content of the ham cut was higher than it was in the loin cut until storage day 3. The ratio of carnosine and anserine increased with an increase in the number of storage days and it ranged from 27.6-59.7 for the loin cut and from 20.1-51.2 for the ham cut. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the loin and the ham cuts significantly decreased as the number of storage days increased. For both types of KNBP cuts, lipid oxidation and volatile basic nitrogen significantly increased after storage day 5. These results found that natural antioxidants carnosine and anserine decreased as the number of storage days increased, and anserine decreased more rapidly than carnosine (p<0.05).

Effects of Supplementary Blood Meal on Carnosine Content in the Breast Meat and Laying Performance of Old Hens

  • Namgung, N.;Shin, D.H.;Park, S.W.;Paik, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.946-951
    • /
    • 2010
  • The objective of this research was to evaluate the effects of dietary supplementation of blood meal (BM) as a source of histidine, and magnesium oxide (MgO) as a catalyst of carnosine synthetase, on carnosine (L-Car) content in the chicken breast muscle (CBM), laying performance, and egg quality of spent old hens. Four hundred eighty laying hens (Hy-Line$^{(R)}$ Brown), 95wk old, were allotted randomly into five replicates of six dietary treatments: T1; 100% basal diet, T2; 100% basal diet+MgO, T3; 97.5% basal diet+2.5% BM, T4; 97.5% basal diet+2.5% BM+MgO, T5; 95% basal diet+5% BM, T6; 95% basal diet+5% BM+MgO. Magnesium oxide was added at 0.3% of diets. The layers were fed experimental diets for 5wk. There were no significant differences in the weekly L-Car content in CBM among all treatments during the total experimental period, but some of the contrast comparisions showed higher L-Car in CBM of T6. The L-Car contents linearly decreased (p<0.01 or p<0.05) as the layers got older except in T4 (p>0.05). There were significant differences in egg weight (p<0.01) and soft and broken egg ratio (p<0.05). The control (T1) was highest in egg weight and T6 was lowest in soft and broken egg ratio. Among the parameters of egg quality, there were significant differences in eggshell strength (p<0.01) and egg yolk color (p<0.05). Magnesium oxide supplementation increased the eggshell strength and BM tended to decrease egg yolk color. Eggshell color, eggshell thickness, and Haugh unit were not influenced by BM and MgO. In conclusion, BM and MgO did not significantly influence the L-Car in CBM of spent layers. The L-Car content rapidly decreased as the layers became senescent. Eggshell strength was increased by MgO supplementation.

Effects of Extraction Methods on Histidine-containing Low-molecular Weight Peptides and Pro-oxidants Contents in Tuna Thunnus Extracts (다랑어(Thunnus) 추출물 중의 Histidine 함유 저분자 펩타이드 및 산화촉진물질 함량에 미치는 추출방법의 영향)

  • Kim, Hong-Kil;Song, Ho-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.6
    • /
    • pp.684-693
    • /
    • 2017
  • We investigated methods for extracting histidine-containing low-molecular-weight (LMW) peptides such as anserine, carnosine and histidine from the edible meat of tuna byproducts. Extracts were treated by several methods including heat treatment ($80^{\circ}C$, 10 min), DOWEX ion exchange (IEC), ultrafiltration (UF), and carboxymethyl (CM)-cellulose column chromatography (IEC+CMC); then the levels of protein, total iron, histidine, carnosine, and anserine were measured. Extracts treated with IEC+CMC using CM-cellulose were analyzed for total iron, protein, histidine, and anserine content, which were $6.27{\pm}0.26mg/mL$, $5.20{\pm}0.21{\mu}g/mL$, 0.80 mg/mL, 0.208 mg/mL, and 4.40 mg/mL, respectively, in yellowfin tuna; and $9.05{\pm}0.82mg/mL$, $4.06{\pm}0.20{\mu}g/mL$, 1.62 mg/mL, 0.012 mg/mL, and 7.28 mg/mL in bigeye tuna. By comparison in IEC-UF treated extracts, protein, total iron, and histidine content decreased by 43%, 73%, and 27% in yellowfin and 0.4%, 54%, and 23% in bigeye tuna, wheres carnosine and anserine content increased by 22% and 17%, respectively. Freeze-dried (FD) extracts exhibited similar trends as non-dried extracts, i.e., dipeptide content increased with purification steps, whereas pro-oxidant (total iron and protein) content decreased. IEC+CMC treated FD extracts had the highest anserine, content, and the greatest reductuion in pro-oxidants.

Effect of Carnosine and Related Compounds on Glucose Oxidation and Protein Glycation In Vitro

  • Lee, Beom-Jun;Park, Jae-Hak;Lee, Yong-Soon;Cho, Myung-Haing;Kim, Young-Chul;Hendricks, Deloy G.
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.370-378
    • /
    • 1999
  • The effects of carnosine and related compounds (CRC) including anserine, homocarnosine, histidine, and ${\beta}$-alanine, found in most mammalian tissues, were investigated on in vitro glucose oxidation and glycation of human serum albumin (HSA). Carnosin and anserine were more reactive with D-glucose than with L-lysine. In the presence of $10\;{\mu}M$ Cu (II), although carnosine and anserine at low concentrations effectively inhibited formation of ${\alpha}$-ketoaldehyde from D-glucose, they increased generation of $H_2O_2$ in a dose-dependent manner. Carnosine, homocarnosine, anserine, and histidine effectively inhibited hydroxylation of salicylate and deoxyribose degradation in the presence of glucose and $10\;{\mu}M$ Cu (II). In the presence of 25 mM D-glucose, copper and ascorbic acid stimulated carbonyl formation from HSA. Except for ${\beta}$-alanine, CRC effectively inhibited the copper-catalyzed carbonyl formation from HSA. The addition of 25 mM D-glucose and/or $10\;{\mu}M$ Cu (II) to low density lipoprotein (LDL) increased formation of conjugated dienes. CRC effectively inhibited the glucose and/or copper-catalyzed LDL oxidation. CRC also inhibited glycation of HSA as determined by hydroxymethyl furfural and lysine with free ${\varepsilon}$-amino group. These results suggest that CRC may play an important role in protecting against diabetic complications by reacting with sugars, chelating copper, and scavenging free radicals.

  • PDF