• Title/Summary/Keyword: L-Ribose

Search Result 147, Processing Time 0.029 seconds

Expression of ERCC1, MSH2 and PARP1 in Non-small Cell Lung Cancer and Prognostic Value in Patients Treated with Platinum-based Chemotherapy

  • Xie, Ke-Jie;He, Hong-Er;Sun, Ai-Jing;Liu, Xi-Bo;Sun, Li-Ping;Dong, Xue-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2591-2596
    • /
    • 2014
  • Purpose: To evaluate the prognostic value of the expression of excision repair cross-complementation group l (ERCC1), MutS protein homolog 2 (MSH2) and poly ADP-ribose polymerase 1 (PARP1) in non-small-cell lung cancer patients receiving platinum-based postoperative adjuvant chemotherapy. Methods: Immunohistochemistry was applied to detect the expression of ERCC1, MSH2 and PARP1 in 111 cases of non-small cell lung cancer paraffin embedded surgical specimens. Through og-rank survival analysis, we evaluated the prognostic value of the ERCC1, MSH2, PARP1 and the related clinicopathological factors. COX regression analysis was used to determine whether ERCC1, MSH2 and PARP1 were independent prognostic factors. Results: In the enrolled 111 non-small cell lung cancer patients, the positive expression rate of ERCC1, MSH2 and RARP1 was 33.3%, 36.9% and 55.9%, respectively. ERCC1 (P<0.001) and PARP1 (P=0.033) were found to be correlated with the survival time while there was no correlation for MSH2 (P=0.298). Patients with both ERCC1 and PARP1 negative cancer had significantly longer survival time than those with ERCC1 (P=0.042) or PARP1 (P=0.027) positive alone. Similalry, the survival time of patients with both ERCC1 and PARP1 positive cancer was shorter than those with ERCC1 (P=0.048) or PARP1 (P=0.01) positive alone. Conclusion: Patients with ERCC1 or PARP1 negative non-small cell lung cancer appear to benefit from platinum-based postoperative adjuvant chemotherapy.

Autophagy Inhibition with Monensin Enhances Cell Cycle Arrest and Apoptosis Induced by mTOR or Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cells

  • Choi, Hyeong Sim;Jeong, Eun-Hui;Lee, Tae-Gul;Kim, Seo Yun;Kim, Hye-Ryoun;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Background: In cancer cells, autophagy is generally induced as a pro-survival mechanism in response to treatment-associated genotoxic and metabolic stress. Thus, concurrent autophagy inhibition can be expected to have a synergistic effect with chemotherapy on cancer cell death. Monensin, a polyether antibiotic, is known as an autophagy inhibitor, which interferes with the fusion of autophagosome and lysosome. There have been a few reports of its effect in combination with anticancer drugs. We performed this study to investigate whether erlotinib, an epidermal growth factor receptor inhibitor, or rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, is effective in combination therapy with monensin in non-small cell lung cancer cells. Methods: NCI-H1299 cells were treated with rapamycin or erlotinib, with or without monensin pretreatment, and then subjected to growth inhibition assay, apoptosis analysis by flow cytometry, and cell cycle analysis on the basis of the DNA contents histogram. Finally, a Western blot analysis was done to examine the changes of proteins related to apoptosis and cell cycle control. Results: Monensin synergistically increases growth inhibition and apoptosis induced by rapamycin or erlotinib. The number of cells in the sub-$G_1$ phase increases noticeably after the combination treatment. Increase of proapoptotic proteins, including bax, cleaved caspase 3, and cleaved poly(ADP-ribose) polymerase, and decrease of anti-apoptotic proteins, bcl-2 and bcl-xL, are augmented by the combination treatment with monensin. The promoters of cell cycle progression, notch3 and skp2, decrease and p21, a cyclin-dependent kinase inhibitor, accumulates within the cell during this process. Conclusion: Our findings suggest that concurrent autophagy inhibition could have a role in lung cancer treatment.

Induction of Apoptosis by Pachymic Acid in T24 Human Bladder Cancer Cells (T24 인체방광암 세포에서 pachymic acid에 의한 apoptosis 유발)

  • Jeong, Jin-Woo;Baek, Jun Young;Kim, Kwang Dong;Choi, Yung Hyun;Lee, Jae-Dong
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • Pachymic acid (PA) is a lanostane-type triterpenoid derived from the Poria cocos mushroom. Several beneficial biological features of PA provide medicine with a wide variety of valuable effects, such as anticancer and anti-inflammatory activity; it also has antioxidant effects against oxidative stress. Nonetheless, the biological properties and mechanisms that produce this anti-cancer action of PA remain largely undetermined. In this study, we investigated the pro-apoptotic effects of PA in T24 human bladder cancer cells. It was found that PA could inhibit the cell growth of T24 cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies and chromatin condensation and accumulation of cells in the sub-G1 phase. The induction of apoptotic cell death by PA was connected with an up-regulation of pro-apoptotic Bax and Bad protein expression and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL proteins, and inhibition of apoptosis family proteins. In addition, apoptosis-inducing concentrations of PA induced the activation of caspase-9, an initiator caspase of the mitochondrial-mediated intrinsic pathway, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. PA also induced apoptosis via a death receptor-mediated extrinsic pathway by caspase-8 activation, resulting in the truncation of Bid and suggesting the existence of cross-talk between the extrinsic and intrinsic pathways. Taken together, the present results suggest that PA may be a potential chemotherapeutic agent for the control of human bladder cancer cells.

Induction of Apoptosis by Citri Pericarpium Methanol Extract through Reactive Oxygen Species Generation in U937 Human Leukemia Cells (진피 메탄올 추출물의 활성산소종 생성을 통한 인체 백혈병 세포의 apoptosis 유발)

  • Kim, Ga Hee;Lee, Moon Hee;Han, Min Ho;Park, Cheol;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1057-1063
    • /
    • 2013
  • Citri Pericarpium is one of the most commonly used traditional herbal medicines in Korea, China, and Japan. Its extracts have many properties including the treatment of indigestion and inflammatory respiratory syndromes such as bronchitis and asthma. However, the underlying molecular mechanisms of anti-cancer activity and molecular targets are not fully understood. In this work, we investigated the anti-proliferative activity of Citri Pericapium (EMCP) methanol extract on reactive oxygen species (ROS) production and the association of these effects with apoptotic cell death using U937 human leukemia cells in vitro. EMCP treatment decreased cell proliferation in a dose-dependent manner following an increase of the sub-G1 phase, the down-regulation of Bax proteins, the activation of caspases, the degradation of poly (ADP-ribose) polymerase proteins (PARP), and the induction of ROS generation. However, the quenching of ROS generation by N-acetyl-L-cysteine administration, a scavenger of ROS, reversed the EMCP-induced apoptosis effects. In addition, heme oxygenase-1 expression also recovered by inhibiting the nuclear translocation of phosphorylated NF-E2-related factor 2. Taken together, our data indicate that ROS are involved as key mediators in the early molecular events in the EMCP-induced apoptotic pathway.

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

Characteristics of Fibrinolytic Enzymes of Bacillus licheniformis CY-24 Isolated from Button Mushroom Compost (양송이 배지로부터 분리한 Bacillus licheniformis CY-24의 섬유소분해 효소의 특성)

  • Min, Gyeong-Jin;Park, Hea-sung;Lee, Een-ji;Lee, Chan-Jung
    • The Korean Journal of Mycology
    • /
    • v.49 no.2
    • /
    • pp.199-209
    • /
    • 2021
  • The present study was performed to improve the technique used for fermenting the mushroom growth medium. Taxonomic analysis of 16S rDNA sequence from the predominant Bacillus strain CY-24 isolated during the fermentation phase of the rice straw medium identified it as Bacillus licheniformis. In addition, the growth environment of B. licheniformis was also examined in this study, which revealed the optimal growth temperature and pH to be 30 ℃ and 6.0, respectively. This study also revealed that carboxymethyl cellulase (CMCase) and polygalacturonase (PGase) enzymes isolated from B. licheniformis achieved their maximal activities at 50 ℃ and 60 ℃ respectively. Furthermore, the study confirmed that the two enzymes, i.e., CMCase and PGase in B. licheniformis are stable at temperatures above 60 ℃. The present study thus demonstrates that B. licheniformis CY-24 possesses excellent enzymatic properties. It also reveals that the action of enzymes during the production of growth mediums used for the cultivation of mushrooms is closely associated with the promotion of fermentation and softening of the rice straw. Overall, this study provides elementary information regarding the role of B. licheniformis enzymes during growth medium fermentation for Agaricus bisporus cultivation.

Induction of apoptosis by water extract Glycyrrhizae radix in human bladder T24 cancer cells (인체 방광암 T24 세포에서 Glycyrrhizae radix 열수추출물에 의한 apoptosis 유도)

  • Eom, Jung Hye;Hwang, Buyng Su;Jeong, Yong Tae;Kim, Min-Jin;Shin, Su Young;Kim, Chul Hwan;Lee, Seung Young;Choi, Kyung Min;Cho, Pyo Yun;Jeong, Jin-Woo;Oh, Young Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.111-111
    • /
    • 2019
  • Glycyrrhizae radix is one of the most frequently prescribed ingredients in Oriental medicine, and G. radix extract has been shown to exert anti-cancer effects. However, the cellular and molecular mechanisms of apoptosis by G. radix are poorly defined. In the present study, it was examined the biochemical mechanisms of apoptosis by water extract of G. radix (WEGR) in human bladder T24 cancer cells. It was found that WEGR could inhibit the cell growth of T24 cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, DNA fragmentation and increased populations of annexin-V positive cells. The induction of apoptotic cell death by WEGR was connected with an up-regulation of pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL proteins, and inhibition of apoptosis family proteins (XIAP, cIAP-1 and cIAP-2). In addition, apoptosis-inducing concentrations of WEGR induced the activation of caspase-9, an initiator caspase of the mitochondrial-mediated intrinsic pathway, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. WEGR also induced apoptosis via a death receptor-mediated extrinsic pathway by caspase-8 activation, resulting in the down-regulation of total Bid and suggesting the existence of cross-talk between the extrinsic and intrinsic pathways. Taken together, the present results suggest that WEGR may be a potential chemotherapeutic agent for the control of human bladder cancer cells.

  • PDF

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

Inhibitory Effects of Spinach, Cabbage, and Onion Extracts on Growth of Cancer Cells (시금치, 양배추, 양파 추출물의 암세포 증식 억제 효과)

  • Lee, Hae-Nim;Shin, Seong-Ah;Choo, Gang-Sik;Kim, Hyeong-Jin;Park, Young-Seok;Kim, Sang-Ki;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.671-679
    • /
    • 2016
  • Extracts from spinach, cabbage, and onion are known to possess various instructive characteristics, including antioxidant and anti-inflammation activities. Spinach, cabbage, and onion are consumed worldwide and represent important sources of dietary phytochemicals with proven antioxidant properties, such as flavonoids and phenolic acids. Food-derived flavonoids and phenolic compounds are expected to be promising drugs for cancer. In the present study, we investigated the effects of methanol extracts of spinach, cabbage, and onion on cell proliferation and apoptosis in human gastric and breast cancer cells. Proliferation rates of AGS, MDA-MB-231, and SK-BR-3 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The methanol extracts of spinach, cabbage, and onion inhibited proliferation of cancer cells in a dose-dependent manner. 4',6-Diamidino-2-phenylindole (DAPI) staining revealed that chromatin condensation significantly increased compared with the control. In the results of MTT assay and DAPI staining, onion extract was the most effective in inhibiting cancer cell proliferation and apoptosis. To assess changes in protein expression level by onion extract, we identified Bax (pro-apoptotic), Bcl-2 (anti-apoptotic), and poly(ADP-ribose) polymerase (PARP) protein by western blot analysis. The expression of Bax and cleaved-PARP increased, whereas expression of Bcl-2 was decreased compared with the control. These results suggest that spinach, cabbage, and onion extracts suppressed growth of human gastric cancer AGS, human breast cancer MDA-MB-231, and SK-BR-3 cells through induction of apoptosis. Among the extracts, onion extract had stronger anti-cancer and apoptosis induction effects than spinach and cabbage extracts. Further, onion extract more effectively induced apoptosis of human gastric cancer cells than human breast cancer cells. Therefore, further studies are needed to determine the anti-cancer effects of onion extracts in vivo. Onion extract can be developed as a chemopreventive or therapeutic agent for gastric cancer.

Inhibitory Effect of the Methanolic Extract of Symphyocladia latiuscula on the Growth of HT-29 Human Colon Cancer Cells (보라우무 메탄올추출물의 HT-29 대장암세포 증식 억제 효과)

  • Kim, Eun-Ji;Park, So-Young;Hong, Ji-Eun;Shin, Min-Jeong;Lim, Soon-Sung;Shin, Hyun-Kyung;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.4
    • /
    • pp.431-438
    • /
    • 2007
  • In the present study, twenty eight marine algae species were evaluated for their antiproliferative effect on HT-29 human colon cancer cells. Among these, the methanolic extract of Symphyocladia latiuscula (SL Ex) showed the highest inhibitory activity on HT-29 cell growth. In this study, we examined the mechanism by which SL Ex inhibited the HT-29 cell growth. Cells were cultured with various concentrations of $(0{\sim}20{\mu}g/mL)$ SL Ex. The SL Ex substantially decreased the viable cell numbers and induced apoptosis of HT-29 cells in a dose-dependent manner Western blot analyses of total cell lysates revealed that SL Ex increased the levels of cleaved caspase-8, -9, -7, and -3, and poly (ADP-ribose) polymerase in HT-29 cells. In addition, SL Ex increased truncated Bid levels but moderately decreased Bax levels at only $20{\mu}g/mL$. Furthermore, SL Ex did not affect Bcl-2 protein levels but increased the levels of Fas in HT-29 cells. The present results indicate that SL Ex inhibits cell growth via inducing apoptosis in human colon cancer cells. The mechanism of apoptosis induction by SL Ex involves caspase-8 activation leading to changes in mitochondrial events and subsequent activation of the caspase-7/caspase-3 cascade. Our finding may lead to the development of new therapeutic strategies for the treatment of colon cancer.