• Title/Summary/Keyword: L-Galactose

Search Result 336, Processing Time 0.022 seconds

Components and Biological Activity of Aqueous Extract Isolated from Winged Stem of Euonymus alatus (화살나무 물 추출물의 구성성분과 생리활성)

  • Oh, Bong-Yun;Hwang, Soo-Kyung;Cheong, Mi-Young;Sin, Hong-Sig;Park, Bock-Hee;Lee, Jeong-Ho;Kim, Soo-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.898-904
    • /
    • 2005
  • Although Euonymus alatus (EA) has been used as traditional medicine for cancer treatment, exact substances involved in curing of the disease are not yet known. Free radical scavenging and reactive oxygen species (ROS) removal activities of aqueous extract components isolated from winged stem of EA in animal cell line were investigated. Aqueous extract of EA (AEEA) was fractionated by ultrafiltration. All fractions mainly consisted of polysaccharide (44.8%), protein (2.1%), small amounts of phenol compounds and organic acids. Antioxidant activity of AEEA increased depending on concentration fractions, as determined by 1,1-diphenyl-2-picrylhydrazyl method. ROS removal activity was visualized in Chinese hamster ovary cell line using laser scanning confocal microscope, and AEEA activity increased in order of F IV>F III>F I>F II. These results suggest AETA has bioactive carbohydrates with potentials as functional foods and antioxidants.

β-Galactosidase-catalyzed Synthesis of 1, 2-Hexanediol Galactoside and its Purification using Ethyl Acetate Extraction followed by Silica Gel Chromatography (대장균 β-Galactosidse를 이용한 1, 2-Hexanediol galactoside의 합성과 Ethyl Acetate 추출 및 Silica Gel Chromatography를이용한 정제)

  • Kim, Yi-Ok;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.498-506
    • /
    • 2016
  • 1, 2-Hexanediol galactoside (HD-gal) has been previously synthesized from 1, 2-hexanediol (HD), in which recombinant ${\beta}$-galactosidase (${\beta}$-gal) of Escherichia coli (E. coli) was used for transgalactosylation reaction. In this study, a method for HD-gal purification from the reaction mixture was particularly investigated. Using ${\beta}$-gal-containing E. coli, HD-gal was synthesized from 75 mM HD for 48 hr under 300 g/l lactose concentration. Then, HD-gal synthesis from HD was confirmed by TLC analysis, and the existence of E. coli ${\beta}$-gal during 48 hr-reaction was also confirmed by Western blotting, in which the conversion yield of HD to HD-gal reached about 94% during 48 hr. To establish an efficient method for HD-gal purification, we carried out the solvent extraction of the reaction mixture, followed by silica gel chromatography, particularly in order to remove the residual HD. Two water-immiscible solvents, such as methylene chloride and ethyl acetate, were investigated comparatively to find out appropriate solvent. Then, it was found that residual HD was almost removed when ethyl acetate extraction of water phase of reaction mixture was carried out four times. Subsequently, silica gel chromatography was carried out, and purified HD-gal could be finally obtained. The production yield for HD-gal from 75 mM HD was $8.9{\pm}0.6%$ (n=3) (mole basis) or $21.1{\pm}1.4%$ (n=3) (weight basis). For further study, using purified HD-gal, we will investigate the minimum inhibitory concentrations (MICs) of HD-gal against bacteria. In addition, cytotoxicity to human skin cells of HD-gal will be examined.

NMR Spectroscopy and Mass Spectrometry of 1, 2-Hexanediol Galactoside synthesized using Escherichia coli β-Galactosidase (대장균 베타-갈락토시데이즈를 이용하여 합성된 1, 2-Hexanediol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Kim, Yi-Ok;Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.286-292
    • /
    • 2016
  • 1, 2-Hexanediol galactoside (HD-gal) has been synthesized from 1, 2-hexanediol (HD), a cosmetic preservative, using recombinant Escherichia coli ${\beta}$-galactosidase (${\beta}$-gal) at the high lactose concentration (300 g/l). To confirm the molecular structure of synthesized HD-gal, NMR ($^1H$- and $^{13}C$-) spectroscopy and mass spectrometry of HD-gal were conducted. $^1H$ NMR spectrum of HD-gal showed multiple peaks corresponding to the galactocyl group, which is an evidence of galactocylation on HD. Downfield proton peaks at ${\delta}_H$ 4.44 ppm and multiple peaks from ${\delta}_H$3.96~3.58 ppm were indicative of galactocylation on HD. Up field proton peaks at ${\delta}_H$ 1.60~1.35 ppm and 0.92 ppm showed the presence of $CH_2$ and $CH_3$ protons of HD. $^{13}C$ NMR spectrum revealed the presence of 21 carbons suggestive of ${\alpha}$- and ${\beta}$-anomers of HD-gal. Among 12 carbon peaks from each anomers, the 3 peaks at dC 68.6, 60.9 and 13.2 ppm were assigned to be overlapped showing only 21 peaks out of total 24 peaks. The mass value (protonated HD-gal, m/z = 281.1601) from mass spectrometry analysis of HD-gal, and $^1H$ and $^{13}C$ NMR spectral data were in well agreement with the expecting structure of HD-gal. For further study, the minimum inhibitory concentrations (MICs) of HD-gal against bacteria will be investigated, and, in addition, cytotoxicity to human skin cells of HD-gal will be examined. It is expected that it will eventually be able to develop a new cosmetic preservative, which have low cytotoxicity against human skin cell and maintains antimicrobial effect.

Study on Effective Preservation of Bovine Pericardium Using Decellulariation and ${\alpha}$-galactosidase for Eliminating Xenoreactive Antigen (이종 항원 제거를 위한 무세포화와 알파-갈락토시다아제를 이용한 효과적인 우심낭 보존 방법에 관한 연구)

  • Kim, Min-Seok;Park, Cham-Jin;Kim, Soo-Hwan;Lim, Hong-Gook;Kim, Yong-Jin
    • Journal of Chest Surgery
    • /
    • v.43 no.6
    • /
    • pp.576-587
    • /
    • 2010
  • Background: Effective decellularization and fixation process is critical, in order to use xenogenic valves clinically. In the present study, we decellularized bovine pericardium using sodium dodecyl sulfate (SDS) and N-lauroyl sarcosinate, treated with $\alpha$-galactosidase, and then fixed in various manners, to find out the most effective tissue preservation & fixation procedure. Material and Method: Bovine pericardium was decellularized with SDS and N-lauroyl sarcosinate, and treated with $\alpha$-galactosidase. Both groups were fixed differently, by varying glutaraldehyde (GA) or EDC (1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide)/N-hydroxysuccinamide (NHS) treatment conditions. Thereafter, physical examination, tensile strength test, thermal stability test, cytotoxicity test, pronase test, pronase-ninhydrin test, purpald test, permeability test, compliance test, H&E staining, DNA quantification, and $\alpha$-galactose staining were carried out to each groups. Result: GA fixed groups showed better physical properties and thermal stability than EDC/NHS fixed groups, EDC/NHS-GA dual fixed groups showed better physical properties and thermal stability than EDC/NHS fixed groups, and showed better thermal stability than GA fixed groups. In pronase test and pronase-ninhydrin test, GA fixed groups and EDC/NHS-GA dual fixed groups showed stronger crosslinks than EDC/NHS groups. Permeability and compliance tended to increase in EDC/NHS-GA dual fixed groups, compared to GA fixed groups. But, EDC/NHS-GA dual fixed groups had stronger tensile strength and lower cytotoxicity than GA fixed groups. Conclusion: We have verified that EDC/NHS-GA dual fixation can make effective crosslinks and lower the toxicity of GA fixation. Henceforth, we will verify if EDC/NHS-GA dual fixation can lower calcifications & tissue failure in vivo experiment.

Studies on the Ecology of Occurrence and Identification of Typhula Snow Mold of Graminous Plants -II. Several Factors Affecting Growth of Typhula incarnata- (화본과식물에 발생하는 설부소입균핵병균(雪腐小粒菌核病菌)의 동정 및 발생상태에 관한 연구 -II. Typhula incarnata의 생육에 미치는 몇 가지 요인-)

  • Kim, Jin-Won;Lee, Du-Hyung;Shim, Gyu-Yul
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • Typhula incarnata grew over a temperature range of -5 to $20^{\circ}C$ with maximum growth at 10 to $15^{\circ}C$. Sclerotial production for T. incarnata was greatest at the higher temperature. Maximum mycelial growth of this pathogen occurred from pH 5.4 to 6.2. When carbon sources were added to a basal salt medium (Czapek's dox agar) at 5 g carbon sources/l, inulin, soluble starch, galactose, glucose, mannose, manitol, sucrose, maltose, cellobirose, trehalose, raffinose, and dextrin supported growth better than other carbon sources did. Of the twenty-three nitrogen sources tested, glycine, serine, ammonium sulfate, asparagine, asparatic acid, and ${\beta}-alanine$ were the most favorable for mycelial growth of T. incarnata. Cystine and cysteine were poor nitrogen sources. Ammonium salt of nitrogen sources supported growth better than nitrate salt of nitrogen sources. Potato dextrose agar, oat meal agar, and V-8 juice agar were the most favorable for mycelial growth and sclerotial formation. Appropriate addition of pepton to PDA decreased mycelial dry weight, but sucrose supported good growth of T. incarnata. Percent viable sclerotia of T. incarnate buried in bentgrass soil decreased from 2 months after treatment remarkably. Trichoderma riride and bacteria were isolated from non-germinated sclerotia. Live orchard grass leaf pieces within the soil were colonized by T. incarnata better than sterile and unsterile dead leaf pieces at $0^{\circ}C$. Saprophytic ability of T. incarnate on sterile leaf sheath occurred better at $0^{\circ}C$ than at $10^{\circ}C$. Saprophytic microflora consisting of Cladosporium sp., Fusarium sp., Mucor sp., Pythium sp., and unidentified fungi were the competitors for the sterilized and unsterilized substrate, but their colonization was not find on live leaf sheath buried in the soil at $0^{\circ}C$. In the effect of fungicides to Typhula snow mold disease of creeping bentgrass, mixture of polyoxin and thiram was the most effective, followed by iprodione, mixture of iprodione and oxine copper, thiophanate-methyl, myclobutanil, and tolclofos-methyl.

  • PDF

Effects of Natural Complex Food on Specific Enzymes of Serum and Liver and Liver Microstructure of Rats Fed a High Fat Diet (지방간 환자를 위한 생식용 천연복합식품이 고지방식이를 급여한 흰쥐의 혈청, 간장의 효소 및 간조직 구조에 미치는 영향)

  • Lee, Eun;Kim, Wan-Jae;Lee, Young-Joo;Lee, Mi-Kyung;Kim, Pan-Gu;Park, Yeon-Jung;Kim, Soo-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.2
    • /
    • pp.256-262
    • /
    • 2003
  • In order to design and develop a product that can treat the fatty liver, natural complex food with all natural ingredients was developed and supplemented to rats with high fat diet to induce fatty liver. As a result, when the amount of natural complex food was increased in diet of subjects, the activities of the blood serum AST, ALT, ALP, 3-GT and LDH were decreased. The total protein concentration levels of the 30% and the 50% natural complex food groups did not show changes in respect to the control group, but the 100% natural complex food groups showed significant decrease (p<0.05). Likewise, the amount of blood serum albumin in the 30% and the 50% natural complex food groups did not show improvement, but the 100% natural complex food did showed significant changes (p<0.05). The amount of blood serum triglyceride decreased as the amount of natural complex food was increased. In order to investigate the appearances of the accumulated fat in the liver, the animals were dissected. Livers of the control group (no natural complex food) were appeared as a white color, which means serious fat accumulation. However, all the natural complex food groups (30,50 and 100% natural complex food) showed noticeable decrease of fat content. Even the histology showed that livers of the control group had expansion of the fat, but a11 the natural complex food groups had e decreased as the contents and continued to show destroyed fatty cells. By observing the biological numeric data, the physical appearance and the history of the fatty liver, it is highly expected that natural complex food is very effective in treating the liver damaged -by the to fat and the cholesterol.