DOI QR코드

DOI QR Code

Study on Effective Preservation of Bovine Pericardium Using Decellulariation and ${\alpha}$-galactosidase for Eliminating Xenoreactive Antigen

이종 항원 제거를 위한 무세포화와 알파-갈락토시다아제를 이용한 효과적인 우심낭 보존 방법에 관한 연구

  • Kim, Min-Seok (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Park, Cham-Jin (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Kim, Soo-Hwan (Seoul National University Hospital, Clinical Research Institute, Xenotransplantation Research Center) ;
  • Lim, Hong-Gook (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Kim, Yong-Jin (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine)
  • 김민석 (서울대학교 의과대학 서울대학교병원 흉부외과학교실) ;
  • 박참진 (서울대학교 의과대학 서울대학교병원 흉부외과학교실) ;
  • 김수환 (서울대학교병원 이종장기이식센터) ;
  • 임홍국 (서울대학교 의과대학 서울대학교병원 흉부외과학교실) ;
  • 김용진 (서울대학교 의과대학 서울대학교병원 흉부외과학교실)
  • Received : 2010.09.06
  • Accepted : 2010.11.15
  • Published : 2010.12.05

Abstract

Background: Effective decellularization and fixation process is critical, in order to use xenogenic valves clinically. In the present study, we decellularized bovine pericardium using sodium dodecyl sulfate (SDS) and N-lauroyl sarcosinate, treated with $\alpha$-galactosidase, and then fixed in various manners, to find out the most effective tissue preservation & fixation procedure. Material and Method: Bovine pericardium was decellularized with SDS and N-lauroyl sarcosinate, and treated with $\alpha$-galactosidase. Both groups were fixed differently, by varying glutaraldehyde (GA) or EDC (1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide)/N-hydroxysuccinamide (NHS) treatment conditions. Thereafter, physical examination, tensile strength test, thermal stability test, cytotoxicity test, pronase test, pronase-ninhydrin test, purpald test, permeability test, compliance test, H&E staining, DNA quantification, and $\alpha$-galactose staining were carried out to each groups. Result: GA fixed groups showed better physical properties and thermal stability than EDC/NHS fixed groups, EDC/NHS-GA dual fixed groups showed better physical properties and thermal stability than EDC/NHS fixed groups, and showed better thermal stability than GA fixed groups. In pronase test and pronase-ninhydrin test, GA fixed groups and EDC/NHS-GA dual fixed groups showed stronger crosslinks than EDC/NHS groups. Permeability and compliance tended to increase in EDC/NHS-GA dual fixed groups, compared to GA fixed groups. But, EDC/NHS-GA dual fixed groups had stronger tensile strength and lower cytotoxicity than GA fixed groups. Conclusion: We have verified that EDC/NHS-GA dual fixation can make effective crosslinks and lower the toxicity of GA fixation. Henceforth, we will verify if EDC/NHS-GA dual fixation can lower calcifications & tissue failure in vivo experiment.

배경: 이종조직판막이나 조직이 임상적으로 이용되기 위해서는 조직의 장기간의 내구성이 동반된 효과적인 보존과 적절한 고정과정이 필요하다. 본 연구에서는 소심낭을 sodium dodecyl sulfate (SDS)와 N-lauroylsarcosinate를 이용하여 무세포화하고, 알파-갈락토시다아제를 처리한 뒤, 이를 다양한 방법으로 고정함으로써 조직손상과 면역반응을 최소화할 수 있는 효과적인 우심낭 보존 방법에 대해 알아보고자 하였다. 대상 및 방법: 우심낭으로부터 이종 이식 보철편을 채취한 뒤 SDS와 N-lauroylsarcosinate를 이용하여 무세포화 하였고, 알파-갈락토시다아제를 처리하였다. 이 두 가지 군에 대하여 각기 다른 조건 즉 glutaraldehyde (GA), l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/Nhydroxysuccinamide (NHS)의 처리를 달리하여 고정하였다. 이후 각 군들의 물리적 성상, 인장강도, 열 안정성 검사, 세포독성 검사, 프로나아제 저항 시험과 Pronase-Ninhydrin 시험, 투과도와 유순도 검사, purpald 검사 등을 시행하였으며, H&E 염색과 DNA 정량, 알파-갈 항원결정인자 염색 등도 함께 시행하였다. 결과: GA 단독 고정군은 EDC/NHS 고정군에 비해 물리적인 성상과 열안정성에서 더 우수하였고, EDC/NHS와 GA의 이중 고정군은 EDC/NHS 고정군에 비해 물리적인 성상과 열안정성에서 더 우수하였으며, GA단독 고정군과 비교해서 열안정성에서 더 우수하였다. 프로나아제 저항 시험과 Pronase-Ninhydrin 시험을 통해 알아본 crosslinking 정도는, GA 고정 군과 EDC/NHS의 이중 고정군이 EDC/NHS 고정군에 비해 높은 것으로 관찰되었다. EDC/NHS와 GA의 이중 고정군은 GA 고정군에 비해 투과도와 유순도가 다소 증가하였으나, GA 고정군에 비해 인장강도가 높고 세포 독성이 감소하는 것으로 관찰되었다. 결론: GA와 EDC/NHS의 이중고정을 통해서, GA단독 고정의 독성을 줄이면서 효과적인 crosslinking을 시행할 수 있음을 확인하였다. 향후 생체내 시험을 통해서 GA와 EDC/NHS의 이중고정이 석회화의 감소와 조직부전에 어떠한 영향을 미치는지 추가적인 연구와 검증이 필요하다.

Keywords

References

  1. Park CS, Kim YJ, Sung SC, et al. Study on effective decellularization technique for xenograft cardiac valve, arterial wall and pericardium; optimization of decellularization. Korean J Thorac Cardiovasc Surg 2008;41:550-62.
  2. Chang HW, Kim YJ, Kim SH, et al. The dynamic and histo logic changes of variously fixed bovine pericardiums specimens after mechanical fatigue stimuli. Korean J Thorac Cardiovasc Surg 2009;42:148-56.
  3. Sung SC, Kim YJ, Choi SY, Park JE, Kim KH, Kim WH. A study on an effective decellularization technique for a xenograft cardiac valve: the effect of osmotic treatment with hypotonic solution. Korean J Thorac Cardiovasc Surg 2008;41: 679-86.
  4. Konakci K, Bohle B, Blumer R, et al. $\alpha$-Gal on bioprosthesis: xenograft immune response in cardiac surgery. Eur J Clin Invest 2005;35:17-23. https://doi.org/10.1111/j.1365-2362.2005.01441.x
  5. Hui X, Hua W, Wenqi Z, et al. A porcine-derived acellular dermal scaffold that supports soft tissue regeneration: Removal of terminal galactose-$\alpha$-(1,3)-galactose and retention of matrix structure. Tissue Engineering: Part A 2009;15:1807-19. https://doi.org/10.1089/ten.tea.2008.0384
  6. Grauss RW, Hazekamp MG, van Vliet S, Gittenberger-de Groot AC, Deruiter MC. Decellularizarion of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 2003;126:2003-10. https://doi.org/10.1016/S0022-5223(03)00956-5
  7. LaVecchio JA, Dunne AD, Edge ASB. Enzymatic removal of alphagalactosyl epitopes from porcine endothelial cells diminishes the cytotoxic effect of natural antibodies. Transplantation 1995;60:841-7.
  8. Park SS, Kim WH, Kim KH, et al. Removal of $\alpha$-gal epitopes in aortic valve and pericardium of pig using green coffee bean $\alpha$-galactosidase. Korean J Thorac Cardiovasc Surg 2008;41:12-24.
  9. Somers P, De Somer F, Cornelissen M, et al. Genipin blues: an alternative non-toxic crosslinker for heart valves? J Heart Valve Dis 2008;17:682-8.
  10. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 2000;21:2215-31. https://doi.org/10.1016/S0142-9612(00)00148-4
  11. Golomb G, Schoen FJ, Smith MS, Linden J, Dixon M, Levy RJ. The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol 1987;127:122-30.
  12. Grabenwöger M, Sider J, Fitzal F, et al. Impact of glutaraldehyde on calcification of pericardial bioprosthetic heart valve material. Ann Thorac Surg 1996;62:772-7.
  13. Jorge-Herrero E, Fernandez P, Escudero C, Garcia-Paez JM, Castillo-Olivares JL. Calcification of pericardial tissue pretreated with different amino acids. Biomaterials 1996;17: 571-5 https://doi.org/10.1016/0142-9612(96)88707-2
  14. Weissenstein C, Human P, Bezuidenhout D, Zilla P. Glutaraldehyde detoxificationin addition to enhanced amine cross-linking dramatically reduces bioprosthetictissue calcification in the rat model. J Heart Valve Dis 2000;9:230-40.
  15. Schoen FJ. Future directions in tissue heart valves: impact of recent insights from biology andpathology. J Heart Valve Dis 1999;8:350-8.
  16. Bailey MT, Pillarisetti S, Xiao H, Vyavahare NR. Role of elastin in pathologic calcification of xenograftheart valves. J Biomed Mater Res 2003;66A:93-102. https://doi.org/10.1002/jbm.a.10543
  17. Pathak CP, Adams AK, Simpson T, Phillips RE, Moore MA. Treatment of bioprosthetic heart valve tissue with long chain alcohol solution to lower calcification potential. J Biomed Mater Res 2004;69:140-4.
  18. Gratzer PF, Pereira GA, Lee JM. Solvent environment modulates effects of glutaraldehyde crosslinking on tissue-derived biomaterials. J Biomed Mater Res 1996;31:533-43. https://doi.org/10.1002/(SICI)1097-4636(199608)31:4<533::AID-JBM14>3.0.CO;2-H
  19. Sung HW, Chang WH, Ma CY, et al. Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res 2003;64A:427-38. https://doi.org/10.1002/jbm.a.10346
  20. Olde Damink LH, Dijkstra PJ, Van Luyn MJ, Van Wachem PB, Nieuwenhuis P, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 1996;17:765-73. https://doi.org/10.1016/0142-9612(96)81413-X
  21. Vasudev SC, Moses LR, Sharma CP. Covalently bonded heparin to alter the pericardial calcification. Artif Cells Blood Substit Immobil Biotechnol 2000;28:241-53. https://doi.org/10.3109/10731190009119355
  22. Zilla P, Bezuidenhout D, Torrianni M, Hendriks M, Human P. Diamine-extended glutaraldehyde- and carbodiimide crosslinks act synergistically in mitigating bioprosthetic aortic wall calcification. J Heart Valve Dis 2005;14:538-45.
  23. Zilla P, Bezuidenhout D, Human P. Carbodiimide treatment dramatically potentiates the anticalcific effect of alpha-amino oleic acid on glutaraldehyde-fixed aortic wall tissue. Ann Thorac Surg 2005;79:905-10. https://doi.org/10.1016/j.athoracsur.2003.12.026