• Title/Summary/Keyword: L-Ascorbic acid

Search Result 893, Processing Time 0.032 seconds

Analysis of gene expression during mineralization of cultured human periodontal ligament cells

  • Choi, Hee-Dong;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.30-43
    • /
    • 2011
  • Purpose: Under different culture conditions, periodontal ligament (PDL) stem cells are capable of differentiating into cementoblast-like cells, adipocytes, and collagen-forming cells. Several previous studies reported that because of the stem cells in the PDL, the PDL have a regenerative capacity which, when appropriately triggered, participates in restoring connective tissues and mineralized tissues. Therefore, this study analyzed the genes involved in mineralization during differentiation of human PDL (hPDL) cells, and searched for candidate genes possibly associated with the mineralization of hPDL cells. Methods: To analyze the gene expression pattern of hPDL cells during differentiation, the hPDL cells were cultured in two conditions, with or without osteogenic cocktails (${\beta}$-glycerophosphate, ascorbic acid and dexamethasone), and a DNA microarray analysis of the cells cultured on days 7 and 14 was performed. Reverse transcription-polymerase chain reaction was performed to validate the DNA microarray data. Results: The up-regulated genes on day 7 by hPDL cells cultured in osteogenic medium were thought to be associated with calcium/iron/metal ion binding or homeostasis (PDE1A, HFE and PCDH9) and cell viability (PCDH9), and the down-regulated genes were thought to be associated with proliferation (PHGDH and PSAT1). Also, the up-regulated genes on day 14 by hPDL cells cultured in osteogenic medium were thought to be associated with apoptosis, angiogenesis (ANGPTL4 and FOXO1A), and adipogenesis (ANGPTL4 and SEC14L2), and the down-regulated genes were thought to be associated with cell migration (SLC16A4). Conclusions: This study suggests that when appropriately triggered, the stem cells in the hPDL differentiate into osteoblasts/cementoblasts, and the genes related to calcium binding (PDE1A and PCDH9), which were strongly expressed at the stage of matrix maturation, may be associated with differentiation of the hPDL cells into osteoblasts/cementoblasts.

Antioxidant and Tyrosinase Inhibitory Activity of Extract Rumex japonicus HOUTT Root and Its Fractions (양제근 추출물 및 분획의 항산화 활성과 Tyrosinase 저해 활성)

  • Yang, Sun A;Seo, Go Eun;Pyo, Byoung Sik;Kim, Sun Min;Choi, Cheol Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.1
    • /
    • pp.10-15
    • /
    • 2017
  • Background: We investigated the antioxidative and tyrosinase inhibitory activities of 70% ethanol extract, and its fractions, of the root of Rumex japonicus HOUTT. Methods and Results: The total phenolic compound contents of the 70% ethanol extract and ethyl acetate fraction were 168.99 mg/g and 651.78 mg/g, respectively. The antioxidant activity was compared through the DPPH radical and nitric oxide (NO) scavenging assays. The ethyl acetate fraction showed the highest DPPH radical and NO scavenging abilities, which confirmed the antioxidant activity. Specifically, the ethyl acetate fraction showed a higher DPPH radical scavenging ability than ascorbic acid. These results were related to the total phenolic compound content of the ethyl acetate fraction. Moreover, in the tyrosinase inhibition assay, the ethyl acetate fraction exhibited stronger inhibitory activity than arbutin, which was used as the positive control. The cell viability of L929 cells was analyzed by MTT assay after treatment with 70% ethanol extract and all fractions; no changes in viability were observed, which demonstrated the nontoxic nature of the extract and fractions. Conclusions: These results suggested that the extract from the root of R. japonicus and its ethyl acetate fraction could be a novel resource for the development of a cosmetic with antioxidant and tyrosinase inhibitory activity.

Effects of Hexaconazole on Growth and Antioxidant Potential of Cucumber Seedlings under UV-B Radiation

  • Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1435-1447
    • /
    • 2012
  • The present study was conducted to determine the effect of hexaconazole (HEX), a triazole fungicide, on the growth, yield, photosynthetic response and antioxidant potential in cucumber (Cucumis sativus L.) plants subjected to UV-B stress. UV-B radiation and HEX were applied separately or in combination to cucumber seedlings. The growth parameters were significantly reduced under UV-B treatment, however, this growth inhibition was less in HEX treated plants. HEX caused noticeable changes in plant morphology such as reduced shoot length and leaf area, and increased leaf thickness. HEX was quite persistent in inhibiting shoot growth by causing a reduction in shoot fresh and dry weight. HEX noticeably recovered the UV-B induced inhibition of biomass production. Significant accumutation in anthocyanin and flavonoid pigments in the leaves occurred as a result of HEX or UV-B treatments. HEX permitted the survival of more green leaf tissue preventing chlorophyll content reduction and higher quantum yield for photosystemII under UV-B exposure. HEX treatment induced a transient rise in ABA levels in the leaves, and combined application of HEX and UV-B showed a significant enhancement of ABA content which activates $H_2O_2$ generation. UV-B exposure induced accumulation of $H_2O_2$ in the leaves, while HEX prevented UV-B induced increase in $H_2O_2$, indicating that HEX serves as an antioxidant agent able to scavenge $H_2O$ to protect cells from oxidative damage. An increase in the ascorbic acid was observed in the HEX treated cucumber leaves affecting many enzyme activities by removing $H_2O_2$ during photosynthetic processes. The activities of antioxidant enzymes including catalase(CAT), ascorbate peroxidase(APX), superoxide dismutase(SOD) and peroxidase(POD) in the leaves in the presence of HEX under UV-B stress were higher than those under UV-B stress alone. These findings suggest that HEX may participate in the enhanced tolerance to oxidative stress. From these results it can be concluded that HEX moderately ameliolate the effect of UV-B stress in cucumber by improving the components of antioxidant defense system.

The Butanol Fraction of Bitter Melon (Momordica charantia) Scavenges Free Radicals and Attenuates Oxidative Stress

  • Kim, Hyun Young;Sin, Seung Mi;Lee, Sanghyun;Cho, Kye Man;Cho, Eun Ju
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.18-22
    • /
    • 2013
  • To investigate radical scavenging effects and protective activities of bitter melon (Momordica charantia) against oxidative stress, in vitro and a cellular system using LLC-$PK_1$ renal epithelial cells were used in this study. The butanol (BuOH) fraction of bitter melon scavenged 63.4% and 87.1% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals at concentrations of 250 and $500{\mu}g/mL$, respectively. In addition, the BuOH fraction of bitter melon effectively scavenged hydroxyl radicals (${\cdot}OH$). At all concentrations tested, the scavenging activity of the BuOH fraction was more potent than that of the positive control, ascorbic acid. Furthermore, under the LLC-$PK_1$ cellular model, the cells showed a decline in viability and an increase in lipid peroxidation through oxidative stress induced by pyrogallol, a generator of superoxide anion ($O_2{^-}$). However, the BuOH fraction of bitter melon significantly and dose-dependently inhibited cytotoxicity. In addition, 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite ($ONOO^-$) formed by simultaneous releases of nitric oxide and $O_2{^-}$, caused cytotoxicity in the LLC-$PK_1$ cells while the BuOH fraction of bitter melon ameliorated oxidative damage induced by $ONOO^-$. These results indicate that BuOH fraction of bitter melon has protective activities against oxidative damage induced by free radicals.

Separation of 6-Gingerol from Ginger [Zingiber officinale Roscoe] and Antioxidative Activity (생강으로부터 6-Gingerol의 분리 및 항산화 활성)

  • Lee, Bong-Soo;Ko, Meyong-Seok;Kim, Hyun-Jong;Kwak, In-Seob;Kim, Dong-Ho;Chung, Bong-Woo
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.484-488
    • /
    • 2006
  • Ginger (Zingiber officinale) is widely used as a dietary condiment throughout the world. Its major constituent, 6-gingerol, exhibits diverse pharmacological activities including anti-oxidant and anti-tumor. Ginger were extracted by 0% to 95% ethanol. Maximum yield of 6-gingerol was obtained with 80% ethanol as extracting solvent at $30^{\circ}C$. We obtained increased yield (7%) of extraction by pretreatment with ultrasonication. Gingerols in the crude ginger extract was isolated by Sepacore preparative liquid chromatography on silica gel. We got the 6-gingerol which weight is 0.53 mg/mL, from fraction F9. Antioxidant effect of 6-gingerol were detected by DPPH moth(10. Its radical scavenging activity was $95{\sim}99%$ which compared with ascorbic acid.

Screening of Peroxynitrite and DPPH Raoical Scavenging Activities from Salt Marsh Plants (염생식물로부터 Peroxynitrite와 DPPH 라디칼 소거 활성 검색)

  • 서영완;이희정;김유아;안종웅;이범종;문성기
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.57-61
    • /
    • 2004
  • A peroxynitrite is formed when superoxide and nitric oxide exist at near eqimolar ratio in biological systems. Although not a free radical by chemical nature, peroxynitrite is a powerful oxidant having a wide array of tissue damaging effects ranging from lipid oxidation and inactivation of enzymes and ion channels through protein oxidation and nitration to inhibition of mitochondrial respiration. During our search for new antioxidizing components from natural resources, twenty salt marsh plants were screened for their ONOO and DPPH radical scavenging activities. Among them, methanol extract of Rosa rugosa, lxeris tamagawaensis, Erigeron annus, Tetragonia tetragonoides, Imperata cylindrica, and Suaeda japonica inhibited more than 85% of peroxynitrite produced by 3-morpholinsydnonimine (SIN-1) at a concentration of 5 $\mu\textrm{g}$/$m\ell$. In addition, Rosa rugosa, Artemisia capillaris, Erigeron annus and Ixeris tamagawaensis showed significant scavenging effect against DPPH (1,1-diphenyl-2-picrylhydrazyl radical).

Effect of Environmental Factors on Flavonol Glycoside Production and Phenylalanine Ammonia-lyase Activity in Cell Suspension Cultures of Ginkgo biloba

  • Kim, Min-Soo;Lee, Won-Kyu;Kim, Hwa-Young;Kim, Chul;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.237-244
    • /
    • 1998
  • A study was carried out to elucidate the relation between the production of flavonol glycosides and the change of phenylalanine ammonia-lyase activity in cell suspension cultures of Ginkgo biloba by the unassisted and synergistic effects of various factors. The quercetin production showed a mixed-growth-associated pattern in cell suspension cultures. Fluorescent light and UV radiation increased phenylalanine ammonia-lyase (PAL) activity, and resulted in the increase of the production of quercetin and kaempferol ten- and four-fold, respectively, as compared to that obtained in the normal culture condition. The cell growth of Ginkgo biloba was enhanced .at higher temperatures whereas the quercetin production was at its maximum at low temperatures. Moreover, the quercetin production was increased by temperature change during the culture period. In particular, the quercetin production was at the highest level when the culture temperature was elevated from $10^{\circ}C\;to\;30^{\circ}C$. The addition of phenylalanine as a precursor in the culture medium stimulated an 8-fold increase in the production of quercetin; the addition of naringenin caused a l0-fold increase. The quercetin production was also greatly increased by feeding enzyme cofactors such as 2-ketoglutarate and ascorbic acid in the culture medium, but specific PAL activity was not increased except with phenylalanine feeding. The synergistic effect of UV radiation and naringenin feeding was observed, resulting in the increase of flavonol glycoside production at a rate higher than in any other case investigated.

  • PDF

Food Consumption and Nutrition Survey in Korean Rural Areas (농촌(農村) 식품섭취실태(食品攝取實態) 및 영양조사(營養調査))

  • Park, Yaung-Ja;Chun, Sung-Kyu
    • Journal of Nutrition and Health
    • /
    • v.9 no.2
    • /
    • pp.87-97
    • /
    • 1976
  • This study is based on data from the food consumption survey on 727 members of 125 farm households from 7 different provinces. The survey was conducted in May, 1975 in cooperation with the O.R.D. The results obtained in this study are summarized as follows. 1. The average consumption of the basic food groups per capita per day was 563 g for cereals and grains(398g of rice and 129g of barley), 87.6g for meats and legumes, 317.8g for fruits and vegetables, 25.7g for milks and small fishes, 9.1g for fats and oils, and 45.1g for other group. 2. The average daily consumption of calories and nutrients was 2256 cal and 11.7g for animal proteins, 70.5g for total proteins, 21.6g for fats, 537.4mg for calcium, 18.1mg for iron, 5375lU for vitamin A, 1.27mg for thiamine, 1.05mg for riboflavin, 15.5mg for niacin, 77.7mg for ascorbic acid. When these figures are compared with the recommended allowances for Korean, the calories and nutrients intakes were satisfactory, except for the intakes of animal protein which was below two third of the recommended allowance. 3. The diets of the projected villages differed from those of the non-projected villages in the following respect: (a) The amounts of animal proteins and fats were larger in the projected villages than in the non-projected villages. (b) The percentage contribution of fats to the total amount of calories from three nutrients, carbohydrates, proteins and fats was higher in the projected villages than in tile non-projected villages. (c) The percentage contribution from carbohydrates to the total amount of calories was higher in the non-projected villages than in the projected villages. 4. Certain physical and clinical symptoms were observed among the people in the rural areas, which can be related to the shortages of animal proteins and fats in their diets. It is recommended to pay special attention to the nutrition of school children in the Korean rural areas.

  • PDF

Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings

  • Goh, Chang-Hyo;Satoh, Kouji;Kikuchi, Shoshi;Kim, Seong-Cheol;Ko, Suk-Min;Kang, Hong-Gyu;Jeon, Jong-Seong;Kim, Cheol-Soo;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.281-291
    • /
    • 2010
  • The rice CHLH gene encodes the $Mg^{2+}$-chelatase H subunit, which is involved in chlorophyll biosynthesis. Growth of the chlorophyll-deficient oschlh mutant is supported by mitochondrial activity. In this study, we investigated the activity of mitochondrial respiration in the illuminated leaves during oschlh seedling development. Growth of mutant plants was enhanced in the presence of 3% sucrose, which may be used by mitochondria to meet cellular energy requirements. ATP content in these mutants was, however, significantly lowered in light conditions. Low cytosolic levels of NADH in illuminated oschlh mutant leaves further indicated the inhibition of mitochondrial metabolism. This down-regulation was particularly evident for oxidative stressresponsive genes in the mutant under light conditions. Hydrogen peroxide levels were higher in oschlh mutant leaves than in wild-type leaves; this increase was largely caused by the impairment of the expression of the antioxidant genes, such as OsAPXl, OsRACl, and OsAOXc in knockout plants. Moreover, treatment of mesophyll protoplasts with ascorbic acid or catalase recovered ATP content in the mutants. Taken together, these results suggest that the light-mediated inhibition of mitochondrial activity leads to stunted growth of CHLH rice seedlings.

Microbial and Nutritional Quality of Extended Shelf Life (ESL) Milk

  • Imm, Jee-Young;Kim, Jong-Gun;Kim, Ji-Uk;Park, Soon-Ok;Oh, Se-Jong;Kim, Young-Jin;Chun, Ho-Nam;Jung, Hoo-Kil;You, Seung-Kwon;Whang, Kwang-Yeon;Kim, Sae-Hun
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.752-757
    • /
    • 2005
  • Changes in milk quality during storage of extended shelf life milk (ESL milk) and non-ESL milk were evaluated. No significant differences were observed between ESL and typical ultra high temperature-treated (UHT) milk in physicochemical properties including non-casein nitrogen (NCN) content, whey protein nitrogen index (WPNI), and L-ascorbic acid content. Low temperature and long time-treated milk (LTLT milk) had significantly higher NCN content and WPNI than those of UHT milk. In terms of microbial quality, yeast, molds, coliforms, and other bacteria were not detected in ESL milk during entire storage (21 days after expiration date) period at 4 and $25^{\circ}C$, while LTLT milk was more susceptible to microbial infection. Rats fed ESL milk resulted in significantly higher body weight, average daily gain, and feed efficiency than those given UHT milk. These results suggest ESL milk maintains better microbial quality than typical UHT milk, particularly during storage under extended refrigeration and at high temperature.