• Title/Summary/Keyword: Kurtosis

Search Result 355, Processing Time 0.02 seconds

A Comprehensive Model for Wind Power Forecast Error and its Application in Economic Analysis of Energy Storage Systems

  • Huang, Yu;Xu, Qingshan;Jiang, Xianqiang;Zhang, Tong;Liu, Jiankun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2168-2177
    • /
    • 2018
  • The unavoidable forecast error of wind power is one of the biggest obstacles for wind farms to participate in day-ahead electricity market. To mitigate the deviation from forecast, installation of energy storage system (ESS) is considered. An accurate model of wind power forecast error is fundamental for ESS sizing. However, previous study shows that the error distribution has variable kurtosis and fat tails, and insufficient measurement data of wind farms would add to the difficulty of modeling. This paper presents a comprehensive way that makes the use of mixed skewness model (MSM) and copula theory to give a better approximation for the distribution of forecast error, and it remains valid even if the dataset is not so well documented. The model is then used to optimize the ESS power and capacity aiming to pay the minimal extra cost. Results show the effectiveness of the new model for finding the optimal size of ESS and increasing the economic benefit.

Plane Surface Generation with a Flat End Mill (평 엔드밀을 이용한 평면가공에서의 가공면 형성기구)

  • Ryu, Si-Hyeong;Kim, Min-Tae;Choe, Deok-Gi;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF

Estimating the Moments of the Project Completion Time in Stochastic Activity Networks: General Distributions for Activity Durations (확률적 활동 네트워크에서 사업완성시간의 적률 추정: 활동시간의 일반적 분포)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.3
    • /
    • pp.49-57
    • /
    • 2018
  • In a previous article, for analyzing a stochastic activity network, Cho proposed a method for estimating the moments (mean, variance, skewness, kurtosis) of the project completion time under the assumption that the durations of activities are independently and normally distributed. Developed in the present article is a method for estimating those moments for stochastic activity networks which allow any type of distributions for activity durations. The proposed method uses the moment matching approach to discretize the distribution function of activity duration, and then a discrete inverse-transform method to determine activity durations to be used for calculating the project completion time. The proposed method can be easily applied to large-sized activity networks, and computationally more efficient than Monte Carlo simulation, and its accuracy is comparable to that of Monte Carlo simulation.

Improved Mechanical Fault Identification of an Induction Motor Using Teager-Kaiser Energy Operator

  • Agrawal, Sudhir;Giri, V.K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1955-1962
    • /
    • 2017
  • Induction motors are a workhorse for the industry. The condition monitoring and fault analysis are the main concern for the engineers. The bearing is one of the vital segment of the induction machine and the condition of the whole machine is decided based on the condition of the bearing. In the present paper, the vibration signal of the bearing has been used for the analysis. The first line of action is to perform a statistical analysis of the vibration signal which gives trends in signal. To get the location of a fault in the bearing the second action is to develop an index based on Wavelet Packet Transform node energy named as Bearing Damage Index (BDI). Further, Teager-Kaiser Energy Operator (TKEO) has been calculated from higher index value to get the envelope and finally Power Spectral Density (PSD) has been applied to identify the fault frequencies. A performance index has also been developed to compare the usefulness of the proposed method with other existing methods. The result shows that the strong amplitude of fault characteristics and its side bands help to decide the type of fault present in the recorded signal obtained from the bearing.

Estimating the Moments of the Project Completion Time in Project Networks (프로젝트 네트워크에서 사업완성시간의 적률 추정)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.61-67
    • /
    • 2017
  • For a project network analysis, a fundamental problem is to estimate the distribution function of the project completion time. In this paper, we propose a method for evaluating moments(mean, variance, skewness, kurtosis) of the project completion time under the assumption that the durations of activities are independently and normally distributed. The proposed method utilizes the technique of discretization to replace the continuous probability density function(pdf) of activity duration with its discrete pdf and a random number generation. The proposed method is easy to use for large-sized project networks, and the computational results of the proposed method indicate that the accuracy is comparable to that of direct Monte Carlo simulation.

Detection of Breathing Rates in Through-wall UWB Radar Utilizing JTFA

  • Liang, Xiaolin;Jiang, Yongling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5527-5545
    • /
    • 2019
  • Through-wall ultra-wide band (UWB) radar has been considered as one of the preferred and non-contact technologies for the targets detection owing to the better time resolution and stronger penetration. The high time resolution is a result of a larger of bandwidth of the employed UWB pulses from the radar system, which is a useful tool to separate multiple targets in complex environment. The article emphasised on human subject localization and detection. Human subject usually can be detected via extracting the weak respiratory signals of human subjects remotely. Meanwhile, the range between the detection object and radar is also acquired from the 2D range-frequency matrix. However, it is a challenging task to extract human respiratory signals owing to the low signal to clutter ratio. To improve the feasibility of human respiratory signals detection, a new method is developed via analysing the standard deviation based kurtosis of the collected pulses, which are modulated by human respiratory movements in slow time. The range between radar and the detection target is estimated using joint time-frequency analysis (JTFA) of the analysed characteristics, which provides a novel preliminary signature for life detection. The breathing rates are obtained using the proposed accumulation method in time and frequency domain, respectively. The proposed method is validated and proved numerically and experimentally.

Prediction of negative peak wind pressures on roofs of low-rise building

  • Rao, K. Balaji;Anoop, M.B.;Harikrishna, P.;Rajan, S. Selvi;Iyer, Nagesh R.
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.623-647
    • /
    • 2014
  • In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

Comparison of Student Evaluation Methods in Team Based Learning Classes for Dental Hygiene Students (치위생학과 팀기반 수업에서 학생평가방법의 비교)

  • Kim, Hyeong-mi
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.5
    • /
    • pp.115-122
    • /
    • 2018
  • The purpose of this study is to compare student evaluation methods in team based learning classes for dental hygiene students. The subjects of this study were the score of dental hygiene students who took the courses of 'oral health education practice'. The analysis methods were spearman correlation analysis, skewness, kurtosis and Mann-Whitney U test. As a result, there was a significant correlation between the self-evaluation and peer-evaluation. Self-evaluation showed lenience tendency rather than peer-evaluation and self-evaluation found the highest central tendency. The peer-evaluation result was more lenience and more central in the group where self-evaluation was performed.

A Mixed Norm Image Restoration Algorithm Using Multi Regularization Parameters (다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식)

  • Choi, Kwon-Yul;Kim, Myoung-Jin;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1073-1078
    • /
    • 2007
  • In this paper, we propose an iterative mixed norm image restoration algorithm using multi regularization parameters. A functional which combines the regularized $l_2$ norm functional and the regularized $l_4$ norm functional is proposed to efficiently remove arbitrary noise. The smoothness of each functional is determined by the regularization parameters. Also, a regularization parameter is used to determine the relative importance between the regularized $l_2$ norm functional and the regularized $l_4$ norm functional using kurtosis. An iterative algorithm is utilized for obtaining a solution and its convergence is analyzed. Experimental results demonstrate the capability of the proposed algorithm.

Properties and Classification of Patterns of Air Discharges (기중방전의 방전원별 특성분석 및 패턴분류)

  • Park, Yeong-Guk;Lee, Gwang-U;Jang, Dong-Uk;Gang, Seong-Hwa;Jeong, Gwang-Ho;Kim, Wan-Su;Lee, Yong-Hui;Im, Gi-Jo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • Partial discharges(PD)in air insulated electric power apparatus often lead to deterioration of solid insulation by electron bombardments and electrochemical reaction. The PD caused to reduce the life time of power apparatus and to increase power losses. Thus understanding and classification of PD patterns in air are very important to discern sources of PD. In this paper, PD in air by using statistical methods was investigated. We classified air discharges, corona, surface discharges and cavity discharges by Kohonen network. For classification of PD patterns, we used statistical operators and parameters such as skewness$(S^+,\; S^-),\; kurtosis(K^+, K^-),\; mean phase(AP^+, AP^-)$, cross-correlation factor(CC) and asymmetry derived from the mean pulse-height phase distribution$(H_{avg}(\phi))$, the max pulse-height phase distribution $(H_{qmax}(\phi))$, the pulse count phase distribution $(H_n(\phi))$ and the pulse height vs. Repetition rate $(H_q(n))$.

  • PDF