Journal of the Institute of Electronics Engineers of Korea SP
/
v.41
no.6
/
pp.89-97
/
2004
An object to reflect or emit light is captured by imaging system as distorted image due to various distortion. It is called image restoration that estimates original object by removing distortion. There are two categories in image restoration method. One is a deterministic method and the other is a stochastic method. In this paper, image restoration using Minimum Fisher Information(MFI), derived from B. Roy Frieden is proposed. In MFI restoration, experimental results to be made according to noise control parameter were investigated. And cross entropy(Kullback-Leibler entropy) was used as a standard measure of restoration accuracy, It is confirmed that restoration results using MFI have various roughness according to noise control parameter.
In this paper, we propose speaker verification method using Support Vector Machine (SVM) kernel with Gaussian Mixture Model (GMM)-supervector based on the Mahalanobis distance. The proposed GMM-supervector SVM kernel method is combined GMM with SVM. The GMM-supervectors are generated by GMM parameters of speaker and other speaker utterances. A speaker verification threshold of GMM-supervectors is decided by SVM kernel based on Mahalanobis distance to improve speaker verification accuracy. The experimental results for text-independent speaker verification using 20 speakers demonstrates the performance of the proposed method compared to GMM, SVM, GMM-supervector SVM kernel based on Kullback-Leibler (KL) divergence, and GMM-supervector SVM kernel based on Bhattacharyya distance.
Structural health monitoring is crucial to maintain the structural performance safely. Moreover, the Kullback-Leibler divergence (KLD) is applied usually to asset the similarity between different probability density functions in the pattern recognition. In this study, the KLD is employed to detect the damage. However the asymmetry of the KLD is a shortcoming for the damage detection, to overcoming this shortcoming, two other divergences and one statistic distribution are proposed. Then the damage identification by the KLD and its three descriptions from the symmetric point of view is investigated. In order to improve the reliability and accuracy of the four divergences, the gapped smoothing method (GSM) is adopted. On the basis of the damage index approach, the new damage index (DI) for detect damage more accurately based on the four divergences is developed. In the last, the grey relational coefficient and hypothesis test (GRCHT) is utilized to obtain the more precise damage identification results. Finally, a clear remarkable improvement can be observed. To demonstrate the feasibility and accuracy of the proposed method, examples of an isotropic beam with different damage scenarios are employed so as to check the present approaches numerically. The final results show that the developed approach successfully located the damaged region in all cases effect and accurately.
Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
Nuclear Engineering and Technology
/
v.55
no.3
/
pp.827-838
/
2023
Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.
Speech unit concatenation with a large database is presently the most popular method for speech synthesis. In this approach, the mismatches at the unit boundaries are unavoidable and become one of the reasons for quality degradation. This paper proposes an algorithm to reduce undesired discontinuities between the subsequent units. Optimal matching points are calculated in two steps. Firstly, the fullback-Leibler distance measurement is utilized for the spectral matching, then the unit sliding and the overlap windowing are used for the waveform matching. The proposed algorithm is implemented for the corpus-based unit concatenating Korean text-to-speech system that has an automatically labeled database. Experimental results show that our algorithm is fairly better than the raw concatenation or the overlap smoothing method.
Communications for Statistical Applications and Methods
/
v.12
no.3
/
pp.743-758
/
2005
This paper consider penalized likelihood regression with data from exponential family. The fast computation method applied to Gaussian data(Kim and Gu, 2004) is extended to non Gaussian data through asymptotically efficient low dimensional approximations and corresponding algorithm is proposed. Also smoothing parameter selection is explored for various exponential families, which extends the existing cross validation method of Xiang and Wahba evaluated only with Bernoulli data.
We propose a clustering based object feature matching for identification of same object in multi-camera system. The method is focused on ease to system initialization and extension. Clustering is used to estimate parameters of Gaussian mixture models of objects. A similarity measure between models are determined by Kullback-Leibler divergence. This method can be applied to occlusion problem in tracking.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.4
/
pp.833-839
/
2016
In this paper, we propose a selective feature extraction algorithm between Markov transition probability and co-occurrence probability for an effective image splicing detection. The Features used in our method are composed of the difference values between DCT coefficients in the adjacent blocks and the value of Kullback-Leibler divergence(KLD) is calculated to evaluate the differences between the distribution of original image features and spliced image features. KLD value is an efficient measure for selecting Markov feature or Co-occurrence feature because KLD shows non-similarity of the two distributions. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. To verify our algorithm we used grid search and 6-folds cross-validation. Based on the experimental results it shows that the proposed method has good detection performance with a limited number of features compared to conventional methods.
Tagging system is the system that allows internet users to assign new meta-data which is called tag to article, photo, video and etc. for facilitating searching and browsing of web contents. Tag cloud, a visual interface is widely used for browsing tag space. Tag cloud selects the tags with the highest frequency and presents them alphabetically with font size reflecting their popularity. However the conventional tag selection method includes known weaknesses. So, we propose a novel tag selection method Freshness, which helps to find fresh web contents. Freshness is the mean value of Kullback-Leibler divergences between each consecutive change of tag co-occurrence probability distribution. We collected tag data from three web sites, Allblog, Eolin and Technorati and constructed the system, 'Fresh Tag Cloud' which collects tag data and creates our tag cloud. Comparing the experimental results between Fresh Tag Cloud and the conventional one with data from Allblog, our one shows 87.5% less overlapping average, which means Fresh Tag Cloud outperforms the conventional tag cloud.
Music-similarity computation is crucial in developing music information retrieval systems for browsing and classification. This paper overviews the recently-proposed centroid-model based music retrieval method and applies the distributional similarity measures to the model for retrieval-performance evaluation. Probabilistic distance measures (also called divergence) compute the distance between two probability distributions in a certain sense. In this paper, we consider the alpha divergence in computing distance between two centroid models for music retrieval. The alpha divergence includes the widely-used Kullback-Leibler divergence and Bhattacharyya distance depending on the values of alpha. Experiments were conducted on both genre and singer datasets. We compare the music-retrieval performance of the distributional similarity with that of the vector distances. The experimental results show that the alpha divergence improves the performance of the centroid-model based music retrieval.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.