• Title/Summary/Keyword: Kriging Analysis

Search Result 350, Processing Time 0.03 seconds

Spatial analysis of Design storm depth using Geostatistical (지구통계학적 기법을 이용한 설계호우깊이 공간분석)

  • Ahn, Sang Jin;Lee, Hyeong Jong;Yoon, Seok Hwan;Kwark, Hyun Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1047-1051
    • /
    • 2004
  • The design storm is a crucial element in urban drainage design and hydrological modeling. The total rainfall depth of a design storm is usually estimated by hydrological frequency analysis using historic rainfall records. The different geostatistical approaches (ordinary kriging, universal kriging) have been used as estimators and their results are compared and discussed. Variogram parameters, the sill, nugget effect and influence range, are analysis. Kriging method was applied for developing contour maps of design storm depths In bocheong stream basin. Effect to utilize weather radar data and grid-based basin model on the spatial variation characteristics of storm requires further study.

  • PDF

Comparison between Kriging and GWR for the Spatial Data (공간자료에 대한 지리적 가중회귀 모형과 크리깅의 비교)

  • Kim Sun-Woo;Jeong Ae-Ran;Lee Sung-Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.271-280
    • /
    • 2005
  • Kriging methods as traditional spatial data analysis methods and geographical weighted regression models as statistical analysis methods are compared. In this paper, we apply data from the Ministry of Environment to spatial analysis for practical study. We compare these methods to performance with monthly carbon monoxide observations taken at 116 measuring area of air pollution in 1999.

An Error Assessment of the Kriging Based Approximation Model Using a Mean Square Error (평균제곱오차를 이용한 크리깅 근사모델의 오차 평가)

  • Ju Byeong-Hyeon;Cho Tae-Min;Jung Do-Hyun;Lee Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.923-930
    • /
    • 2006
  • A Kriging model is a sort of approximation model and used as a deterministic model of a computationally expensive analysis or simulation. Although it has various advantages, it is difficult to assess the accuracy of the approximated model. It is generally known that a mean square error (MSE) obtained from the kriging model can't calculate statistically exact error bounds contrary to a response surface method, and a cross validation is mainly used. But the cross validation also has many uncertainties. Moreover, the cross validation can't be used when a maximum error is required in the given region. For solving this problem, we first proposed a modified mean square error which can consider relative errors. Using the modified mean square error, we developed the strategy of adding a new sample to the place that the MSE has the maximum when the MSE is used for the assessment of the kriging model. Finally, we offer guidelines for the use of the MSE which is obtained from the kriging model. Four test problems show that the proposed strategy is a proper method which can assess the accuracy of the kriging model. Based on the results of four test problems, a convergence coefficient of 0.01 is recommended for an exact function approximation.

Analysis of the Front Disk Brake Squeal Using Kriging Method (크리깅기법을 이용한 전륜 디스크 브레이크 모델의 스퀼 저감 해석)

  • Sim, Hyun-Jin;Park, Sang-Gil;Kim, Heung-Seob;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1042-1048
    • /
    • 2008
  • Disc brake noise is an important customer satisfaction and warranty issue for many manufacturers as indicated by technical literature regarding the subject coming from Motor Company. This research describes results of a study to assess disk brake squeal propensity using finite element methods and optimal technique (Kriging). In this study, finite element analysis has been performed to determine likely modes of brake squeal. This paper deals with friction-induced vibration of disc brake system under contact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigen-values are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model. In this paper, Kriging from among the meta-modeling techniques is proposed for an optimal design scheme to reduce the brake squeal noise.

Optimization of a Train Suspension using Kriging Meta-model (크리깅 메타모델에 의한 철도차량 현수장치 최적설계)

  • Lee, Kwang-Ki;Lee, Tae-Hee;Park, Chan-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.339-344
    • /
    • 2001
  • In recent engineering, the designer has become more and more dependent on the computer simulations such as FEM (Finite Element Method) and BEM (Boundary Element Method). In order to optimize such implicit models more efficiently and reliably, the meta-modeling technique has been developed for solving such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). It is widely used for exploring the engineer's design space and for building meta-models in order to facilitate an effective solution of multi-objective and multi-disciplinary optimization problems. Optimization of a train suspension is performed according to the minimization of forty-six responses that represent ten ride comforts, twelve derailment quotients, twelve unloading ratios, and twelve stabilities by using the Kriging meta-model of a train suspension. After each Kriging meta-model is constructed, multi-objective optimal solutions are achieved by using a nonlinear programming method called SQP (Sequential Quadratic Programming).

  • PDF

Shape Optimization of A Micromixer with Herringbone Grooves Using Kriging Model (헤링본 미세혼합기의 크리깅 모델을 사용한 최적형상설계)

  • Ansari, Mubashshir Ahmad;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.711-717
    • /
    • 2007
  • Shape optimization of a staggered herringbone groove micromixer using three-dimensional Navier-Stokes analysis has been carried using Kriging model. The analysis of the degree of mixing is performed by the calculation of spatial data statistics. The calculation of the variance of the mass fraction at various nodes on a plane in the channel is used to quantify mixing. A numerical optimization technique with Kriging model is applied to optimize the shape of the grooves on a single wall of the channel. Three design variables, namely, the ratio of groove width to groove pitch, the ratio of the groove depth to channel height ratio and the angle of the groove, are selected for optimization. A mixing index is used as the objective function. The results of the optimization show that the mixing is very sensitive to the shape of the groove which can be used in controlling mixing in microdevices.

Comparison of global models for calculation of accurate and robust statistical moments in MD method based Kriging metamodel (크리깅 모델을 이용한 곱분해 기법에서 정확하고 강건한 통계적 모멘트 계산을 위한 전역모델의 비교 분석)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.678-683
    • /
    • 2008
  • Moment-based reliability analysis is the method to calculate reliability using Pearson System with first-four raw moments obtained from simulation model. But it is too expensive to calculate first four moments from complicate simulation model. To overcome this drawback the MD(multiplicative decomposition) method which approximates simulation model to kriging metamodel and calculates first four raw moments explicitly with multiplicative decomposition techniques. In general, kriging metamodel is an interpolation model that is decomposed of global model and local model. The global model, in general, can be used as the constant global model, the 1st order global model, or the 2nd order global model. In this paper, the influences of global models on the accuracy and robustness of raw moments are examined and compared. Finally, we suggest the best global model which can provide exact and robust raw moments using MD method.

  • PDF

Runoff Analysis using Spatially Distributed Rainfall Data (공간 분포된 강우를 이용한 유출 해석)

  • Lee, Jong-Hyeong;Yoon, Seok-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.3-14
    • /
    • 2005
  • Accurate estimation of the spatial distribution of rainfall is critical to the successful modeling of hydrologic processes. The objective of this study is to evaluate the applicability of spatially distributed rainfall data. Spatially distributed rainfall was calculated using Kriging method and Thiessen method. The application of spatially distributed rainfall was appreciated to the runoff response from the watershed. The results showed that for each method the coefficient of determination for observed hydrograph was $0.92\~0.95$ and root mean square error was $9.78\~10.89$ CMS. Ordinary Kriging method showed more exact results than Simple Kriging, Universal Kriging and Thiessen method, based on comparison of observed and simulated hydrograph. The coefncient of determination for the observed peak flow was 0.9991 and runoff volume was 0.9982. The accuracy of rainfall-runoff prediction depends on the extent of spatial rainfall variability.

Improving Dimension Reduction Method Using Kriging Interpolation (Kriging 보간법을 사용한 개선된 차원감소법)

  • Choi, Joo-Ho;Choi, Chang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.135-140
    • /
    • 2007
  • In this paper, an Improved Dimension Reduction(IDR) method is proposed for uncertainty quantification that employes Kriging interpolation technic. It has been acknowledged that the DR method is accurate and efficient for assessing statistical moments and reliability due to the sensitivity free feature. However, the DR method has a number of drawbacks such as instability and inaccuracy for problems with increased nonlineality. In this paper, improved DR is implanted by three steps. First, the Kriging interpolation method is used to accurately approximate the responses. Second, 2N+1 and 4N+1 ADOEs are proposed to maintain high accuracy of the method for UQ analysis. Third, numerical integration scheme is used with accurate but free response values at any set of integration points of the surrogated model.

  • PDF

Comparative Studies of Kriging Methods for Estimation of Geo-Layer Distribution of Songdo International City in Incheon (인천 송도국제도시 지층분포추정을 위한 크리깅 방법의 비교연구)

  • Kim, Dong-Hee;Ryu, Dong-Woo;Lee, Ju-Hyoung;Choi, In-Gul;Kim, Jong-Kook;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.57-64
    • /
    • 2010
  • Kriging techniques have been used to estimate the spatial distribution of soil layers and soil properties in the geotechnical engineering area. Since the selected kriging technique may provide different values of estimation, the selection of method is important in the geotechnical estimation. In this paper, the spatial distribution of the thickness of consolidation layer of Songdo International City is estimated using simple, ordinary, and universal kriging techniques, and the reliability of estimated results is analyzed. It is shown that the consolidation layer thickness estimated by the simple kriging technique is larger than those by other kriging techniques when the location of estimation is far from the locations where the measured data exist. In this case, the reliability of the simple kriging technique is observed to be lower than those of other techniques. Universal kriging gives a negative value for thickness of consolidation layer in some locations away from the data. It is concluded that the ordinary kriging is the most optimized estimation technique because the reliability of ordinary kriging technique is higher than those of other ones and the consolidation layer thickness estimated by the ordinary kriging locates within the reasonable range.