• Title/Summary/Keyword: Kriging

Search Result 687, Processing Time 0.032 seconds

Analysis of Spatial Variability for Infiltration Rate of Field Soils II. Kriging (토양중(土壤中) 물의 침투속도(浸透速度)의 공간변이성(空間變異性) 분석(分析) II. Kriging)

  • Park, Chang-Seo;Kim, Jai-Joung;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.18-23
    • /
    • 1984
  • Spatial variability of 96 laboratory-measured infiltration rates on the Hwadong SiCL was studied using geostatistical concepts. The measurement was made at the nodes of the regular grid consisting of 12 rows and 8 columns. Sample spacing within rows and columns was 3 and 2m, respectively. Kriging was a means of spacial prediction that can be used for the infiltration rate. It was optimal in the sense that it provided estimates at unrecorded places without bias and with minimum and known variance. An attempt has been made with original data to verily the validity of all assumptions (Stationarity, Variogram models, etc.) by Jack-knifing procedure and frequency distribution. Variogram models were not different from other models, such as linear in calculation of both kriged values and variances in justification of its choice for simplicity. Correlation coefficient for a one-to-one relationship between measured and kriged values was found to be 0.308, which was not significantly different at 1% significance level.

  • PDF

Population Distribution Estimation Using Regression-Kriging Model (Regression-Kriging 모형을 이용한 인구분포 추정에 관한 연구)

  • Kim, Byeong-Sun;Ku, Cha-Yong;Choi, Jin-Mu
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.6
    • /
    • pp.806-819
    • /
    • 2010
  • Population data has been essential and fundamental in spatial analysis and commonly aggregated into political boundaries. A conventional method for population distribution estimation was a regression model with land use data, but the estimation process has limitation because of spatial autocorrelation of the population data. This study aimed to improve the accuracy of population distribution estimation by adopting a Regression-Kriging method, namely RK Model, which combines a regression model with Kriging for the residuals. RK Model was applied to a part of Seoul metropolitan area to estimate population distribution based on the residential zones. Comparative results of regression model and RK model using RMSE, MAE, and G statistics revealed that RK model could substantially improve the accuracy of population distribution. It is expected that RK model could be adopted actively for further population distribution estimation.

Rapid Estimation of the Aerodynamic Coefficients of a Missile via Co-Kriging (코크리깅을 활용한 신속한 유도무기 공력계수 추정)

  • Kang, Shinseong;Lee, Kyunghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • Surrogate models have been used for the rapid estimation of six-DOF aerodynamic coefficients in the context of the design and control of a missile. For this end, we may generate highly accurate surrogate models with a multitude of aerodynamic data obtained from wind tunnel tests (WTTs); however, this approach is time-consuming and expensive. Thus, we aim to swiftly predict aerodynamic coefficients via co-Kriging using a few WTT data along with plenty of computational fluid dynamics (CFD) data. To demonstrate the excellence of co-Kriging models based on both WTT and CFD data, we first generated two surrogate models: co-Kriging models with CFD data and Kriging models without the CFD data. Afterwards, we carried out numerical validation and examined predictive trends to compare the two different surrogate models. As a result, we found that the co-Kriging models produced more accurate aerodynamic coefficients than the Kriging models thanks to the assistance of CFD data.

A Parallel Approach for Accurate and High Performance Gridding of 3D Point Data (3D 점 데이터 그리딩을 위한 고성능 병렬처리 기법)

  • Lee, Changseop;Rizki, Permata Nur Miftahur;Lee, Heezin;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.8
    • /
    • pp.251-260
    • /
    • 2014
  • 3D point data is utilized in various industry domains for its high accuracy to the surface information of an object. It is substantially utilized in geography for terrain scanning and analysis. Generally, 3D point data need to be changed by Gridding which produces a regularly spaced array of z values from irregularly spaced xyz data. But it requires long processing time and high resource cost to interpolate grid coordination. Kriging interpolation in Gridding has attracted because Kriging interpolation has more accuracy than other methods. However it haven't been used frequently since a processing is complex and slow. In this paper, we presented a parallel Gridding algorithm which contains Kriging and an application of grid data structure to fit MapReduce paradigm to this algorithm. Experiment was conducted for 1.6 and 4.3 billions of points from Airborne LiDAR files using our proposed MapReduce structure and the results show that the total execution time is decreased more than three times to the convention sequential program on three heterogenous clusters.

Adaptively selected autocorrelation structure-based Kriging metamodel for slope reliability analysis

  • Li, Jing-Ze;Zhang, Shao-He;Liu, Lei-Lei;Wu, Jing-Jing;Cheng, Yung-Ming
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.187-199
    • /
    • 2022
  • Kriging metamodel, as a flexible machine learning method for approximating deterministic analysis models of an engineering system, has been widely used for efficiently estimating slope reliability in recent years. However, the autocorrelation function (ACF), a key input to Kriging that affects the accuracy of reliability estimation, is usually selected based on empiricism. This paper proposes an adaption of the Kriging method, named as Genetic Algorithm optimized Whittle-Matérn Kriging (GAWMK), for addressing this issue. The non-classical two-parameter Whittle-Matérn (WM) function, which can represent different ACFs in the Matérn family by controlling a smoothness parameter, is adopted in GAWMK to avoid subjectively selecting ACFs. The genetic algorithm is used to optimize the WM model to adaptively select the optimal autocorrelation structure of the GAWMK model. Monte Carlo simulation is then performed based on GAWMK for a subsequent slope reliability analysis. Applications to one explicit analytical example and two slope examples are presented to illustrate and validate the proposed method. It is found that reliability results estimated by the Kriging models using randomly chosen ACFs might be biased. The proposed method performs reasonably well in slope reliability estimation.

Structural Design of a Container Crane Part-Jaw, Using Metamodels (메타모델을 이용한 크레인 부품 조의 구조설계)

  • Song, Byoung-Cheol;Bang, Il-Kwon;Han, Dong-Seop;Han, Geun-Jo;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Rail clamps are mechanical components installed to fix the container crane to its lower members against wind blast or slip. According to rail clamps should be designed to survive harsh wind loading conditions. In this study, a jaw structure, which is a part of a wedge-typed rail clamp, is optimized with respect to its strength under a severe wind loading condition. According to the classification of structural optimization, the structural optimization of a jaw is included in the category of shape optimization. Conventional structural optimization methods have difficulties in defining complex shape design variables and preventing mesh distortions. To overcome the difficulties, the metamodel using Kriging interpolation method is introduced to replace the true response by an approximate one. This research presents the shape optimization of a jaw using iterative Kriging interpolation models and a simulated annealing algorithm. The new Kriging models are iteratively constructed by refining the former Kriging models. This process is continued until the convergence criteria are satisfied. The optimum results obtained by the suggested method are compared with those obtained by the DOE (design of experiments) and VT (variation technology) methods built in ANSYS WORKBENCH.

  • PDF

The Optimal Design for Noise Reduction of the Intake System in Automobile Using Kriging Model (크리깅을 이용한 자동차 흡기계의 소음 저감에 대한 최적 설계)

  • Sim Hyoun-Jin;Ryu Je-Seon;Cha Kyung-Joon;Oh Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, the regulations of the government and the concerns of people have rise to the interest in noise pollution levels as compared to other vehicles. In this area, many researchers have studied to reduce this noise in the field of automotive engineering. This paper proposes an optimal design scheme to reduce the noise of the intake system by adapting Kriging with two meta-heuristic techniques. For this, as a measuring tool for the performance of the intake system, the performance prediction software, was used. Then, the length and radius of each component of the current intake system are selected as input variables and the orthogonal arrays is adapted as a space-filling design. With these simulated data, we can estimate a correlation parameter in Kriging by solving the nonlinear problem with a genetic algorithm and find an optimal level for the intake system by optimizing Kriging estimated with simulated annealing. We notice that this optimal design scheme gives noticeable results and is a preferable way to analyze the intake system. Therefore, an optimal design for the intake system is proposed by reducing the noise of its system.

Design of Low Noise Engine Cooling Fan for Automobile using DACE Model (전산실험모형을 이용한 자동차 엔진 냉각홴의 저소음 설계)

  • Sim, Hyoun-Jin;Park, Sang-Gul;Joe, Yong-Goo;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.509-515
    • /
    • 2009
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the optimal design for noise reduction of the engine cooling fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.

Design of Low Noise Engine Cooling Fan for Automobile using DACE Model (전산실험모형을 이용한 자동차 엔진 냉각팬의 저소음 설계)

  • Sim, Hyoun-Jin;Lee, Hae-Jin;Lee, You-Yub;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1307-1312
    • /
    • 2007
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the Optimal Design for Noise Reduction of the Engine Cooling Fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.

  • PDF

The Effects of Spatial Patterns in Low Resolution Thematic Maps on Geostatistical Downscaling

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.625-635
    • /
    • 2011
  • This paper investigates the effects of spatial autocorrelation structures in low resolution data on downscaling without ground measurements or secondary data, as well as the potential of geostatistical downscaling. An advanced geostatistical downscaling scheme applied in this paper consists of two analytical steps: the estimation of the point-support spatial autocorrelation structure by variogram deconvolution and the application of area-to-point kriging. Point kriging of block data without variogram deconvolution is also applied for a comparison purpose. Experiments using two low resolution thematic maps derived from remote sensing data showing very different spatial patterns are carried out to discuss the objectives. From the experiments, it is demonstrated that the advanced geostatistical downscaling scheme can generate the downscaling results that well preserve overall patterns of original low resolution data and also satisfy the coherence property, regardless of spatial patterns in input low resolution data. Point kriging of block data can produce the downscaling result compatible to that by area-to-point kriging when the spatial continuity in block data is strong. If heterogeneous local variations are dominant in input block data, the treatment of the low resolution data as point data cannot generate the reliable downscaling result, and this simplification should not be applied to donwscaling.