DOI QR코드

DOI QR Code

Rapid Estimation of the Aerodynamic Coefficients of a Missile via Co-Kriging

코크리깅을 활용한 신속한 유도무기 공력계수 추정

  • Kang, Shinseong (Department of Aerospace Engineering, Pusan National University) ;
  • Lee, Kyunghoon (Department of Aerospace Engineering, Pusan National University)
  • Received : 2019.09.02
  • Accepted : 2019.11.19
  • Published : 2020.01.01

Abstract

Surrogate models have been used for the rapid estimation of six-DOF aerodynamic coefficients in the context of the design and control of a missile. For this end, we may generate highly accurate surrogate models with a multitude of aerodynamic data obtained from wind tunnel tests (WTTs); however, this approach is time-consuming and expensive. Thus, we aim to swiftly predict aerodynamic coefficients via co-Kriging using a few WTT data along with plenty of computational fluid dynamics (CFD) data. To demonstrate the excellence of co-Kriging models based on both WTT and CFD data, we first generated two surrogate models: co-Kriging models with CFD data and Kriging models without the CFD data. Afterwards, we carried out numerical validation and examined predictive trends to compare the two different surrogate models. As a result, we found that the co-Kriging models produced more accurate aerodynamic coefficients than the Kriging models thanks to the assistance of CFD data.

유도무기의 설계 및 제어에서 6자유도 공력계수의 신속한 추정을 위해 공력계수 데이터에 기반한 예측 모형이 주로 이용된다. 고정확도의 공력계수 예측 모형은 다수의 풍동시험 데이터로 생성할 수 있지만, 이는 많은 시간과 자원을 요구한다. 따라서 본 연구에서는 소수의 풍동시험 데이터를 다수의 전산유체역학 데이터와 혼합한 코크리깅 기법을 활용해 고정확도의 공력계수를 신속하고 효율적으로 예측하고자 한다. 풍동시험과 전산유체역학 데이터를 혼용한 예측 모형의 우수성을 보기 위해, 전산유체역학 데이터 보조의 유무에 따라 두 가지 공력계수 예측 모형을 생성한 후 수치적 검증과 예측 경향성 점검으로 두 모형의 예측 정확도를 비교하였다. 그 결과, 전산유체역학 데이터의 도움 덕분에 코크리깅 모형으로 크리깅 모형보다 더 정확한 공력계수 산출이 가능한 것을 확인하였다.

Keywords

References

  1. Vidanovic, N., Rasuo, B., Kastratovic, G., Maksimovic, S., Curcic, D., and Samardzic, M., "Aerodynamic-Structural Missile Fin Optimization," Aerospace Science and Technology, Vol. 65, 2017, pp. 26-45. https://doi.org/10.1016/j.ast.2017.02.010
  2. Ha, H., Oh, S., and Yee, K., "Feasibility Study of Hierarchical Kriging Model in the Design Optimization Process," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 2, 2014, pp. 108-118. https://doi.org/10.5139/JKSAS.2014.42.2.108
  3. Kontogiannis, S. G., Demange, J., Kipouros, T., and Savill, A. M., "A Comparison Study of Two Multifidelity Methods for Aerodynamic Optimization," In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, January 2018, pp. 0415-1-16.
  4. Jouhaud, J. C., Sagaut, P., and Labeyrie, B., "A Kriging Approach for CFD/Wind-tunnel Data Comparison," Journal of Fluids Engineering, Vol. 128, No. 4, 2006, pp. 847-855. https://doi.org/10.1115/1.2201642
  5. Yondo, R., Andres, E., and Valero, E., "A Review on Design of Experiments and Surrogate Models in Aircraft Real-Time and Many-Query Aerodynamic Analyses," Progress in Aerospace Sciences, Vol. 96, 2018, pp. 23-61. https://doi.org/10.1016/j.paerosci.2017.11.003
  6. Yim, J., Lee, B. J., and Kim, C., "Exploring Multi-Stage Shape Optimization Strategy of Multi-Body Geometries Using Kriging-Based Model and Adjoint Method," Computers & Fluids, Vol. 68, pp. 71-87. https://doi.org/10.1016/j.compfluid.2012.07.015
  7. Kang, K. T., and Lee, S., "Modeling and Assessment of Jet Interaction Database for Continuous-Type Side Jet," Journal of Spacecraft and Rockets, Vol. 54, No. 4, 2017, pp. 916-929. https://doi.org/10.2514/1.A33807
  8. Simpson, T., Mistree, F., Korte, J., and Mauery, T., "Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization," In 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 1998, pp. 4755-1-11.
  9. Ahmed, M. Y. M., and Qin, N., "Comparison of Response Surface and Kriging Surrogates in Aerodynamic Design Optimization of Hypersonic Spiked Blunt Bodies," In 13th International Conference on Aerospace Sciences and Aviation Technology, May 2009, pp. AE-15-1-17.
  10. Sun, X., Ge, J., Yang, T., Xu, Q., and Zhang, B., "Multifidelity Multidisciplinary Design Optimization of Integral Solid Propellant Ramjet Supersonic Cruise Vehicles," International Journal of Aerospace Engineering, 2019, pp. 5192424-1-18.
  11. Xuan, Y., Xiang, J., Zhang, W., and Zhang, Y., "Gradient-Based Kriging Approximate Model and Its Application Research to Optimization Design," Science in China Series E: Technological Sciences, Vol. 52, No. 4, 2009, pp. 1117-1124. https://doi.org/10.1007/s11431-009-0096-2
  12. Han, Z. H., Görtz, S., and Zimmermann, R., "Improving Variable-Fidelity Surrogate Modeling via Gradient-Enhanced Kriging and a Generalized Hybrid Bridge Function," Aerospace Science and technology, Vol. 25, No. 1, 2013, pp. 177-189. https://doi.org/10.1016/j.ast.2012.01.006
  13. Jo, Y., and Choi, S., "Variable-Fidelity Aerodynamic Design Using Gradient-Enhanced Kriging Surrogate Model with Regression," In 52nd Aerospace Sciences Meeting, January 2014, pp. 0900-1-29.
  14. Vanderwyst, A., Shelton, A., and Martin, C. L., "A Computationally Efficient, Multi-Fidelity Assessment of Jet Interactions for Highly Maneuverable Missiles," In 34th AIAA Applied Aerodynamics Conference, June 2016, pp. 4333-1-11.
  15. Han, Z., Zimmerman, R., and Gortz, S., "Alternative Cokriging Method for Variable-Fidelity Surrogate Modeling," AIAA journal, Vol. 50, No. 5, pp. 1205-1210. https://doi.org/10.2514/1.J051243
  16. Toal, D. J. J., and Keane, A. J., "Efficient Multipoint Aerodynamic Design Optimization via Cokriging," Journal of Aircraft, Vol. 48, No. 5, 2011, pp. 1685-1695. https://doi.org/10.2514/1.C031342
  17. Da Ronch, A., Ghoreyshi, M., and Badcock, K. J., "On the Generation of Flight Dynamics Aerodynamic Tables by Computational Fluid Dynamics," Progress in Aerospace Sciences, Vol. 47, No. 8, 2011, pp. 597-620. https://doi.org/10.1016/j.paerosci.2011.09.001
  18. Zhou, Q., Wang, Y., Choi, S. K., Jiang, P., Shao, X., and Hu, J., "A Sequential Multi-Fidelity Metamodeling Approach for Data Regression," Knowledge-Based Systems, Vol. 134, 2017, pp. 199-212. https://doi.org/10.1016/j.knosys.2017.07.033
  19. Yamazaki, W., and Mavriplis, D. J., "Derivative-Enhanced Variable Fidelity Surrogate Modeling for Aerodynamic Functions," AIAA journal, Vol. 51, No. 1, 2012, pp. 126-137. https://doi.org/10.2514/1.J051633
  20. Srinivasan, M., Whittecar, W., Edwards, S., and Mavris, D., "Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment," In AIAA SPACE 2012 Conference & Exposition, September 2012, pp. 5200-1-12.
  21. Forrester, A., Sobester, A., and Keane, A., Engineering Design via Surrogate Modelling: A Practical Guide, John Wiley & Sons, Chichester, UK, 2008, pp. 49-63.