• Title/Summary/Keyword: Krein space estimation

Search Result 5, Processing Time 0.028 seconds

A Krein Space Approach for Robust Extended Kalman Filtering on Mobile Robots in the Presence of Uncertainties

  • Jin, Seung-Hee;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1771-1776
    • /
    • 2003
  • In mobile robot navigation, one of the key problems is the pose estimation of the mobile robot. Although the odometry can be used to describe the motions of the mobile robots quite simple and accurately, the validities of the models are limited by a number of error sources contaminating the encoder outputs so that applying the conventional extended Kalman filter to these nominal model does not yield the satisfactory performance. As a remedy for this problem, we consider the uncertain nonlinear kinematic model of the mobile robot that contains the norm bounded uncertainties and also propose a new robust extended Kalman filter based on the Krein space approach. The proposed robust filter has the same recursive structure as the conventional extended Kalman filter and can hence be readily designed to effectively account for the uncertainties. The computer simulations will be given to verify the robustness against the parameter variation as well as the reliable performance of the proposed robust filter.

  • PDF

Krein Space Robust Extended Kalman filter Design for Pose Estimation of Mobile Robots with Wheelbase Uncertainties (휠베이스에 불확실성을 갖는 이동로봇의 자세 추정을 위한 크라인 스페이스 강인 확장 칼만 필터의 설계)

  • Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.433-436
    • /
    • 2003
  • The estimation of the position and the orientation for the mobile robot constitutes an important problem in mobile robot navigation. Although the odometry can be used to describe the motions of the mobile robots, there inherently exist the gaps between the real robots and the mathematical model, which may be caused by a number of error sources contaminating the encoder outputs. Hence, applying the standard extended Kalman filter for the nominal model is not supposed to give the satisfactory performance. As a solution to this problem, a new robust extended Kalman filter is proposed based on the Krein space approach. We consider the uncertain discrete time nonlinear model of the mobile robot that contains the uncertainties represented as sum quadratic constraints. The proposed robust filter has the merit of being constructed by the same recursive structure as the standard extended Kalman filter and can, therefore, be easily designed to effectively account for the uncertainties. The simulations will be given to verify the robustness against the parameter variation as veil as the reliable performance of the proposed robust filter.

  • PDF

Design of Incoming Ballistic Missile Tracking Systems Using Extended Robust Kalman Filter (확장 강인 칼만 필터를 이용한 접근 탄도 미사일 추적 시스템 설계)

  • 이현석;나원상;진승희;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.188-188
    • /
    • 2000
  • The most important problem in target tracking can be said to be modeling the tracking system correctly. Although the simple linear dynamic equation for this model has used until now, the satisfactory performance could not be obtained owing to uncertainties of the real systems in the case of designing the filters baged on the dynamic equations. In this paper, we propose the extended robust Kalman filter (ERKF) which can be applied to the real target tracking system with the parameter uncertainties. A nonlinear dynamic equation with parameter uncertainties is used to express the uncertain system model mathematically, and a measurement equation is represented by a nonlinear equation to show data from the radar in a Cartesian coordinate frame. To solve the robust nonlinear filtering problem, we derive the extended robust Kalman filter equation using the Krein space approach and sum quadratic constraint. We show the proposed filter has better performance than the existing extended Kalman filter (EKF) via 3-dimensional target tracking example.

  • PDF

[ $H_{\infty}$ ] Multi-Step Prediction for Linear Discrete-Time Systems: A Distributed Algorithm

  • Wang, Hao-Qian;Zhang, Huan-Shui;Hu, Hong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.135-141
    • /
    • 2008
  • A new approach to $H_{\infty}$ multi-step prediction is developed by applying the innovation analysis theory. Although the predictor is derived by resorting to state augmentation, nevertheless, it is completely different from the previous works with state augmentation. The augmented state here is considered just as a theoretical mathematic tool for deriving the estimator. A distributed algorithm for the Riccati equation of the augmented system is presented. By using the reorganized innovation analysis, calculation of the estimator does not require any augmentation. A numerical example demonstrates the effect in reducing computing burden.

Advanced Relative Localization Algorithm Robust to Systematic Odometry Errors (주행거리계의 기구적 오차에 강인한 개선된 상대 위치추정 알고리즘)

  • Ra, Won-Sang;Whang, Ick-Ho;Lee, Hye-Jin;Park, Jin-Bae;Yoon, Tae-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.931-938
    • /
    • 2008
  • In this paper, a novel localization algorithm robust to the unmodeled systematic odometry errors is proposed for low-cost non-holonomic mobile robots. It is well known that the most pose estimators using odometry measurements cannot avoid the performance degradation due to the dead-reckoning of systematic odometry errors. As a remedy for this problem, we tty to reflect the wheelbase error in the robot motion model as a parametric uncertainty. Applying the Krein space estimation theory for the discrete-time uncertain nonlinear motion model results in the extended robust Kalman filter. This idea comes from the fact that systematic odometry errors might be regarded as the parametric uncertainties satisfying the sum quadratic constrains (SQCs). The advantage of the proposed methodology is that it has the same recursive structure as the conventional extended Kalman filter, which makes our scheme suitable for real-time applications. Moreover, it guarantees the satisfactoty localization performance even in the presence of wheelbase uncertainty which is hard to model or estimate but often arises from real driving environments. The computer simulations will be given to demonstrate the robustness of the suggested localization algorithm.