• Title/Summary/Keyword: Korean water

Search Result 67,518, Processing Time 0.094 seconds

Antibacterial, Antioxidative and Antiaging Effects of Allium cepa Peel Extracts (양파껍질 추출물의 항균, 항산화 및 항노화 효과에 관한 연구)

  • Kim, Jung Eun;Kim, A Reum;Kim, Min Ji;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.178-184
    • /
    • 2011
  • In this study, the antibacterial, antioxidative and inhibitory effects of Allium cepa peel extracts on tyrosinase and elastase were investigated. MIC values of the ethyl acetate fraction of Allium cepa peel on especially, S. aureus among the skin resident flora (Staphylococcus aureus, S. aureus; Propionibacterium acnes, P. acnes; Pityrosporum ovale, P. ovale; Escherichia coli, E. coli) were 0.06%. The aglycone fraction showed more excellent free radical (1,1-diphenyl-2-picrylhydrazyl radical, DPPH) scavenging activity ($FSC_{50}=5.05{\mu}g/mL$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of the ethyl acetate fraction and aglycone fraction in the luminol-dependent $Fe^{3+}-EDTA/H_2O_2$ system were 0.05 and $0.03{\mu}g/mL$, respectively. The cellular protective effect of the aglycone fraction on the rose-bengal sensitized photohemolysis of human erythrocytes exhibited more prominent (${\tau}_{50}$, 480 min at $25{\mu}g/mL$). The inhibitory effects ($IC_{50}$) of the ethyl acetate fraction and aglycone fraction on tyrosinase were 9.16 and $8.68{\mu}g/mL$, the inhibitory effect ($IC_{50}$) of the aglycone fraction on elastase was $14.12{\mu}g/mL$ The transepidermal water loss of the cream containing 0.1% ethyl acetate fraction was decreased from $8.3g/m^2h$ in control to $6.8g/m^2h$ in the subjects applied with cream containing the ethyl acetate fraction. These results indicate that extract/fractions of Allium cepa peel can function as antioxidant in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS, and possibly as antiaging agents. Allium cepa peel extract could be used as a new cosmeceutical for whitening and anti-wrinkle products.

Monitoring of Radioactivity and Heavy Metal Contamination of Dried Processed Fishery Products (건조 수산가공식품의 방사능 및 중금속 오염도 조사)

  • Lee, Ji-Yeon;Jeong, Jin-A;Jeon, Jong-Sup;Lee, Seong-Bong;Kwon, Hye-Jung;Kim, Jeong-Eun;Lee, Byoung-Hoon;Mo, A-Ra;Choi, Ok-Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.248-256
    • /
    • 2021
  • A total of 120 samples corresponding to 12 categories of dried processed fishery products distributed in Gyeonggi-do were examined for radioactivity contamination (131I, 134Cs, 137Cs) and heavy metals (lead, cadmium, arsenic, and mercury). One natural radioactive material, 40K, was detected in all products, while the artificial radioactive materials 131I, 134Cs and 137Cs were not detected at above MDA (minimum detectable activity) values. The detection ranges of heavy metals converted by biological basis were found as follows: Pb (N.D.-0.332 mg/kg), Cd (N.D.-2.941 mg/kg), As (0.371-15.007 mg/kg), Hg (0.0005-0.0621 mg/kg). Heavy metals were detected within standard levels when there was an acceptable standard, but the arsenic content was high in most products, although none of the products had a permitted level of arsenic. In the case of dried processed fishery products, there are products that are consumed by restoring moisture to its original state, but there are also many products that are consumed directly in the dry state, so it will be necessary to set permitted levels for heavy metals considering this situation in the future. In addition, Japan has decided to release contaminated water from the Fukushima nuclear power plant into the ocean, so there is high public concern about radioactivity contamination of food, including fishery products. Therefore, continuous monitoring of various food items will be necessary to ease consumers' anxiety.

Effect of Super Absorbent Polymer on Germination and Growth of Safflower and Amaranth Sprouts (고흡수성 합성고분자가 홍화 및 아마란스 새싹의 발아 및 생육에 미치는 영향)

  • Jang, Seong-Nam;Lee, Ga-Oun;Lee, Seung-man;Yun, Jae Gil;Shin, Hyunsuk;Son, Ki-Ho
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • This study was conducted to evaluate the growth characteristics, phenolic concentration and antioxidant capacity of safflower (Carthamus tinctorius L.) and amaranth (Amaranthus spp.) sprout and investigate the possibility of using super absorbent polymer (SAP) as a medium in hydroponic cultivation in a plant factory. The control was used a commercial sprout cultivation tool (19 × 14 × 9 cm, W × D × L), and a treatment (SAP) was added on the cultivation tool to compare the effect of SAP. Safflower sprouts were immersed in a distilled water at 30 ℃ for 5 hours, and then grown in a plant growth chamber. The temperature and relative humidity were maintained at 25 ± 1℃ and 70 ± 4%, respectively. The light condition was maintained at 35 ± 6 μmol·m-2·s-1 (12h). Amaranth sprouts were grown in a plant growth chamber maintained with temperature of 25 ± 2℃, relative humidity of 70 ± 5% and light condition of 188 ± 10 μmol·m-2·s-1 (16h). A physical and chemical characteristic of SAP, and a germination rate, growth characteristics and secondary metabolites were analyzed in both safflower and amaranth. There was no significant effect on SAP in a germination rate, growth and secondary metabolites of safflower compared to the control, whereas amaranth grown under SAP was higher in germination rate, dry weight, phenolic concentration, and antioxidant capacity compared to the control. As a result, this study was suggested that cultivation of sprouts using SAP would be possible in a plant factory, and further studies on SAP on plant physiological response are required.

The control of TiO2 nanofiber diameters using fabrication variables in electrospinning method (전기 방사 공정의 제조 변수를 이용한 TiO2 나노섬유의 직경 제어)

  • Yoon, Han-Sol;Kim, Bo-Sung;Kim, Wan-Tae;Na, Kyeong-Han;Lee, Jung-Woo;Yang, Wan-Hee;Park, Dong-Cheol;Choi, Won-Youl
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • TiO2 has been used in various fields such as solar cells, dental implants, and photocatalysis, because it has high physical and chemical stability and is harmless to the body. TiO2 nanofibers which have a large specific surface area also show a good reactivity in bio-friendly products and excellent photocatalysis in air and water purification. To fabricate TiO2 nanofibers, an electrospinning method was used. To observe the diameter of TiO2 nanofibers with fabrication variables, the fabrication variables was divided into precursor composition variables and process variables and microstructure was analyzed. The concentrations of PVP (Polyvinylpyrrolidone) and TTIP (Titanium(IV) isopropoxide) were selected as precursor composition variables, and inflow velocity and voltage were also selected as process variables. Microstructure and crystal structure of TiO2 nanofibers were analyzed using FE-SEM (Field emission scanning electron microscope) and XRD (X-ray diffraction), respectively. As-spun TiO2 nanofibers with an average diameter of about 0.27 ㎛ to 1.31 ㎛ were transformed to anatase TiO2 nanofibers with an average diameter of about 0.22 ㎛ to 0.78 ㎛ after heat treatment of 3 hours at 450℃. Anatase TiO2 nanofibers with an average diameter of 0.22 ㎛ can be expected to improve the photocatalytic properties by increasing the specific surface area. To change the average diameter of TiO2 nanofibers, the control of precursor composition variables such as concentrations of PVP and TTIP is more efficient than the control of electrospinning process variables such as inflow velocity and voltage.

Analysis of antioxidant activities, beta-glucan, and nutritional contents by different strains of Volvariella volvacea (풀버섯 균주별 항산화 활성, 베타글루칸 및 영양성분 함량 분석)

  • An, Gi-Hong;Im, Ji-Hoon;Cho, Jae-Han;Kim, Ok-Tae;Han, Jae-Gu
    • Journal of Mushroom
    • /
    • v.19 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • The hot-water extracts of four strains of Volvariella volvacea [Vv (KMCC04386), Vv-Chi (KMCC04382), V9-21 (KMCC04380), and VG-19 (KMCC05115)] were prepared to determine their antioxidant activities, ��-glucan content, and nutritional content. Among the four V. volvacea strains, Vv strain showed the highest DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (23.7%). The highest total polyphenol and total flavonoid contents (8.17 mg y/g and 3.46 mg QE/g, respectively) were observed in the Vv-Chi strain. The ferric reducing antioxidant power (FRAP) and reducing power were significantly higher in the Vv-Chi strain compared to those in the other V. volvacea strains (p<0.05). There were no significant differences in the nitrite scavenging activity among the four different strains (p<0.05). The ��-glucan content in the four V. volvacea strains ranged from 15.13-16.07%, and the VG-19 strain had the highest ��-glucan content (15.73%). The VG-19 strain also had the highest total amino acid (986.8 mg/kg) and essential amino acid (369.3 mg/kg) contents among the four V. volvacea strains. The results of this study showed that the Vv-Chi strain exhibited the highest antioxidant activity, while the ��-glucan and nutritional contents were higher in the VG-19 strain compared to those in the other strains of V. volvacea.

Separation of Vanadium and Tungsten from Spent SCR DeNOX Catalyst by Ion-exchange Column (SCR 탈질 폐촉매로부터 이온교환칼럼을 이용한 바나듐과 텅스텐의 분리)

  • Heo, Seo-Jin;Jeon, Jong-Hyuk;Kim, Rina;Kim, Chul-Joo;Chung, Kyeong Woo;Jeon, Ho-Seok;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.54-63
    • /
    • 2021
  • Vanadium and tungsten can be obtained by separating/recovering the leaching solution from a spent SCR DeNOX catalyst using the soda roasting-water leaching process. Therefore, in this study, the adsorption/desorption mechanism of vanadium and tungsten in an ion-exchange column was investigated using Lewatit MonoPlus MP 600, a strong basic anion exchange resin. The operating conditions for the separation of vanadium and tungsten in the ion-exchange column was intended to present. By conducting a continuous adsorption experiment in a pH 8.5 solution, the adsorption capacity of vanadium and tungsten was found to be 44.75 and 64.92 mg/(g of resin), respectively, which showed that the adsorption capacity of tungsten was larger than that of vanadium because of the difference in ion charge. Vanadium has a higher affinity for MP 600 than tungsten. Consequently, as the vanadium-containing solution is eluted through the ion exchange resin onto which tungsten is adsorbed, the adsorbed tungsten is exchanged with vanadium and desorbed. A continuous experiment was performed with a solution of vanadium and tungsten prepared at the same concentration as the spent SCR DeNOX catalyst leachate. The adsorption capacity of vanadium was found to be 48.72 mg/(g of resin) and 80% of the supplied vanadium was adsorbed; in contrast, almost no tungsten was adsorbed. Therefore, vanadium and tungsten were separated effectively. The ion exchange resin was treated with 2 M HCl at 15 mL/h, and 97.7% of the vanadium(99% purity) could be desorbed. After desorption, NH4Cl was added to precipitate ammonium polyvanadate at 90℃ and recover 93% of the vanadium.

World brand strategy using traditional patterns (전통 문양을 활용한 세계의 브랜드 전략 - 기업 브랜드 정체성을 중심으로 -)

  • KIM, Mihye
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.133-150
    • /
    • 2022
  • Calling the 21th century the age of 'cultural competition' is not an overstatement. In an era of globalization, we try to find the 'identity of our country' in our culture. 'Culture' is the unique ethnicity of the people of each country that reflects the traces of their lives. As the world is transforming into a multi-dimensional place, traditional patterns in reference to cultural uniqueness and original formativeness are the brands that represent the people. France's luxury brand, GOYARD's Y-shaped pattern naturally made during the persistent traditional handmade process is still France's representative corporate brand and is considered prestigious even after 150 years have passed. On the other hand, in low-income countries, patterns created in the natural process of weaving fabrics are succeeded as a unique cultural aesthetic and are loved by people all over the world. Like this, people living in the global multi-dimensional world look to attain the framework 'One Planet Perspective' which is to succeed their own native culture and preserve the unique culture of others. For example, in the process of international relief organizations delivering relief supplies to Columbia's "Wayu tribe" due to the water shortage in 2013, a handmade product, "Mochila Bag" was discovered. Triggered by this incident, Europe and Korea decide to import it to support the livelihood of the "Wayu tribe." Also, the aesthetic and cultural values of the traditional culture in minority tribes that have evolved through thousands of years have been listed on UNESCO and preserved worldwide. Likewise, culture doesn't suddenly appear overnight, but rather the brand representing the company is the pattern used in the trend of the era kept for over 100 years. Moreover, patterns that reflect the country's identity are inherited as the unique aesthetic of the culture. Our country does inherit the unique aesthetic of our culture, but doesn't have a 'strong image' that displays the practical value reinterpreted creatively and aesthetically to fit the modern trend. Traditional patterns are important in perspective of study and theoretical research, but the brand's image using those patterns is a new medium from the past existence continuing to the current tradition. Furthermore, this study suggests that the image of a company that uses traditional patterns will have high economical potential as a national brand.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors (완충재-근계암반 상호작용을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 연구 현황 및 주요 영향인자 도출)

  • Hong, Chang-Ho;Kim, Ji-Won;Kim, Jin-Seop;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.30-58
    • /
    • 2022
  • The deep geological repository for high-level radioactive waste disposal is a multi barrier system comprised of engineered barriers and a natural barrier. The long-term integrity of the deep geological repository is affected by the coupled interactions between the individual barrier components. Erosion and piping phenomena in the compacted bentonite buffer due to buffer-rock interactions results in the removal of bentonite particles via groundwater flow and can negatively impact the integrity and performance of the buffer. Rapid groundwater inflow at the early stages of disposal can lead to piping in the bentonite buffer due to the buildup of pore water pressure. The physiochemical processes between the bentonite buffer and groundwater lead to bentonite swelling and gelation, resulting in bentonite erosion from the buffer surface. Hence, the evaluation of erosion and piping occurrence and its effects on the integrity of the bentonite buffer is crucial in determining the long-term integrity of the deep geological repository. Previous studies on bentonite erosion and piping failed to consider the complex coupled thermo-hydro-mechanical-chemical behavior of bentonite-groundwater interactions and lacked a comprehensive model that can consider the complex phenomena observed from the experimental tests. In this technical note, previous studies on the mechanisms, lab-scale experiments and numerical modeling of bentonite buffer erosion and piping are introduced, and the future expected challenges in the investigation of bentonite buffer erosion and piping are summarized.

A study on the significance and structural improvement of the stone chamber tomb by the application of a compound lime - Mortar during the reign of king Sejong in the Joseon Dynasty (조선 세종대 삼물회(三物灰) 도입에 따른 석실릉 구조개선과 의의)

  • SHIN, Jihye
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.223-242
    • /
    • 2022
  • The main purpose of this study is to find out the meaning of structural changes that appeared in the royal tombs of the Joseon Dynasty after the application of a compound lime-mortar(Sammulhoe三物灰: the mortar with lime, sand, ocher). In the early Joseon Dynasty, the royal tomb was constructed by following the system of the stone chamber tomb in the Goryeo Dynasty. However the system of the stone chamber tomb recorded in 『GukJo-OReYi(國朝五禮儀: The five category's formalities in the Joseon Dynasty)』 is very different from that in the Goryeo Dynasty. The biggest difference is that a compound lime-mortar was applied into the system of the stone chamber tomb in order to attempt structural reinforcement. This change reflects King Sejong's willingness to build a dense structure in which water does not permeate the stone chamber when Yeongneung(英陵) was built in 1446(the 28th year of King Sejong's reign). Yeongneung is a complex structure consisting of a stone chamber and compound lime-mortar wall. After constructing a stone chamber, the 1.2m(4尺) thick wall with a compound lime-mortar is additionally constructed outside the stone chamber structure. In 1468(the year of King Yejong's accession), according to the will of King Sejo, the stone chamber system was abolished and the Hyeongung(玄宮: the chamber enshrining a coffin of the deceased king or queen consort) was constructed only by the thick wall with a compound lime-mortar. This change become a primary cause for the royal tomb to be constructed as Hoekyukneung(灰隔陵: the royal tomb with chamber constructed only by the thick wall with compound lime-mortar) in the late Joseon Dynasty. The Hoekyukneung in the late Joseon Dynasty has been constructed with the method of structure and construction for the thick wall with a compound lime-mortar since the complex structure recorded in 『GukJo-OReYi(國朝五禮儀)』. The Hoekuykseoksilneung(灰隔石室陵: the complex structure consisting of a stone chamber and compound lime-mortar wall) is unique tomb style of Joseon Dynasty and become a motive of tomb system(Hoekuykneung) in the late Joseon Dynasty.