• Title/Summary/Keyword: Korean text classification

Search Result 413, Processing Time 0.027 seconds

Selection of An Initial Training Set for Active Learning Using Cluster-Based Sampling (능동적 학습을 위한 군집기반 초기훈련집합 선정)

  • 강재호;류광렬;권혁철
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.859-868
    • /
    • 2004
  • We propose a method of selecting initial training examples for active learning so that it can reach high accuracy faster with fewer further queries. Our method is based on the assumption that an active learner can reach higher performance when given an initial training set consisting of diverse and typical examples rather than similar and special ones. To obtain a good initial training set, we first cluster examples by using k-means clustering algorithm to find groups of similar examples. Then, a representative example, which is the closest example to the cluster's centroid, is selected from each cluster. After these representative examples are labeled by querying to the user for their categories, they can be used as initial training examples. We also suggest a method of using the centroids as initial training examples by labeling them with categories of corresponding representative examples. Experiments with various text data sets have shown that the active learner starting from the initial training set selected by our method reaches higher accuracy faster than that starting from randomly generated initial training set.

Active Vision from Image-Text Multimodal System Learning (능동 시각을 이용한 이미지-텍스트 다중 모달 체계 학습)

  • Kim, Jin-Hwa;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.795-800
    • /
    • 2016
  • In image classification, recent CNNs compete with human performance. However, there are limitations in more general recognition. Herein we deal with indoor images that contain too much information to be directly processed and require information reduction before recognition. To reduce the amount of data processing, typically variational inference or variational Bayesian methods are suggested for object detection. However, these methods suffer from the difficulty of marginalizing over the given space. In this study, we propose an image-text integrated recognition system using active vision based on Spatial Transformer Networks. The system attempts to efficiently sample a partial region of a given image for a given language information. Our experimental results demonstrate a significant improvement over traditional approaches. We also discuss the results of qualitative analysis of sampled images, model characteristics, and its limitations.

Structuring of Pulmonary Function Test Paper Using Deep Learning

  • Jo, Sang-Hyun;Kim, Dae-Hoon;Kim, Yoon;Kwon, Sung-Ok;Kim, Woo-Jin;Lee, Sang-Ah
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.61-67
    • /
    • 2021
  • In this paper, we propose a method of extracting and recognizing related information for research from images of the unstructured pulmonary function test papers using character detection and recognition techniques. Also, we develop a post-processing method to reduce the character recognition error rate. The proposed structuring method uses a character detection model for the pulmonary function test paper images to detect all characters in the test paper and passes the detected character image through the character recognition model to obtain a string. The obtained string is reviewed for validity using string matching and structuring is completed. We confirm that our proposed structuring system is a more efficient and stable method than the structuring method through manual work of professionals because our system's error rate is within about 1% and the processing speed per pulmonary function test paper is within 2 seconds.

Analysis of Potential Construction Risk Types in Formal Documents Using Text Mining (텍스트 마이닝을 통한 건설공사 공문 잠재적 리스크 유형 분석)

  • Eom, Sae Ho;Cha, Gichun;Park, Sun Kyu;Park, Seunghee;Park, Jongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.91-98
    • /
    • 2023
  • Since risks occurring in construction projects can have a significant impact on schedules and costs, there have been many studies on this topic. However, risk analysis is often limited to only certain construction situations,and experience-dependent decision-making is therefore mainly performed. Data-based analyses have only been partially applied to safety and contract documents. Therefore, in this study, cluster analysis and a Word2Vec algorithm were applied to formal documents that contain important elements for contractors or clients. An initial classification of document content into six types was performed through cluster analysis, and 157 occurrence types were subdivided through application of the Word2Vec algorithm. The derived terms were re-classified into five categories and reviewed as to whether the terms could develop into potential construction risk factors. Identifying potential construction risk factors will be helpful as basic data for process management in the construction industry.

Automated Scoring of Scientific Argumentation Using Expert Morpheme Classification Approaches (전문가의 형태소 분류를 활용한 과학 논증 자동 채점)

  • Lee, Manhyoung;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.321-336
    • /
    • 2020
  • We explore automated scoring models of scientific argumentation. We consider how a new analytical approach using a machine learning technique may enhance the understanding of spoken argumentation in the classroom. We sampled 2,605 utterances that occurred during a high school student's science class on molecular structure and classified the utterances into five argumentative elements. Next, we performed Text Preprocessing for the classified utterances. As machine learning techniques, we applied support vector machines, decision tree, random forest, and artificial neural network. For enhancing the identification of rebuttal elements, we used a heuristic feature-engineering method that applies experts' classification of morphemes of scientific argumentation.

A Study on Planning & Implementation of the Multimedia Meta Database and Digital Library's Integrated Information System for the Oceanographic Information Center (해양전문정보센터의 멀티미디어 메타데이터베이스 및 디지털도서관 통합정보시스템 구현에 관한 연구)

  • Han, Jong-Yup;Choi, Young-Jun
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.4 s.54
    • /
    • pp.5-26
    • /
    • 2004
  • A literature analysis for the planning and realization of the multimedia meta database and digital library's integrated information system was carried out to establish the various oceanographic resources in the Oceanographic Information Center, the first in Korea. The study targeted from printed matter, network resources, full-text and to VOD. The focus of the analysis lies in the providing practical integrated information retrieval service for oceanographic resources based on the framework of effective MODS metadata with network resources description. The analyses included oceanographic resources, multimedia information processing, MODS metadata descriptive elements, metadata classification, system organization, and retrieval for planning and implementation of the multimedia meta database system.

Two Statistical Models for Automatic Word Spacing of Korean Sentences (한글 문장의 자동 띄어쓰기를 위한 두 가지 통계적 모델)

  • 이도길;이상주;임희석;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.358-371
    • /
    • 2003
  • Automatic word spacing is a process of deciding correct boundaries between words in a sentence including spacing errors. It is very important to increase the readability and to communicate the accurate meaning of text to the reader. The previous statistical approaches for automatic word spacing do not consider the previous spacing state, and thus can not help estimating inaccurate probabilities. In this paper, we propose two statistical word spacing models which can solve the problem of the previous statistical approaches. The proposed models are based on the observation that the automatic word spacing is regarded as a classification problem such as the POS tagging. The models can consider broader context and estimate more accurate probabilities by generalizing hidden Markov models. We have experimented the proposed models under a wide range of experimental conditions in order to compare them with the current state of the art, and also provided detailed error analysis of our models. The experimental results show that the proposed models have a syllable-unit accuracy of 98.33% and Eojeol-unit precision of 93.06% by the evaluation method considering compound nouns.

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF

VOC Summarization and Classification based on Sentence Understanding (구문 의미 이해 기반의 VOC 요약 및 분류)

  • Kim, Moonjong;Lee, Jaean;Han, Kyouyeol;Ahn, Youngmin
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • To attain an understanding of customers' opinions or demands regarding a companies' products or service, it is important to consider VOC (Voice of Customer) data; however, it is difficult to understand contexts from VOC because segmented and duplicate sentences and a variety of dialog contexts. In this article, POS (part of speech) and morphemes were selected as language resources due to their semantic importance regarding documents, and based on these, we defined an LSP (Lexico-Semantic-Pattern) to understand the structure and semantics of the sentences and extracted summary by key sentences; furthermore the LSP was introduced to connect the segmented sentences and remove any contextual repetition. We also defined the LSP by categories and classified the documents based on those categories that comprise the main sentences matched by LSP. In the experiment, we classified the VOC-data documents for the creation of a summarization before comparing the result with the previous methodologies.

GCNXSS: An Attack Detection Approach for Cross-Site Scripting Based on Graph Convolutional Networks

  • Pan, Hongyu;Fang, Yong;Huang, Cheng;Guo, Wenbo;Wan, Xuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4008-4023
    • /
    • 2022
  • Since machine learning was introduced into cross-site scripting (XSS) attack detection, many researchers have conducted related studies and achieved significant results, such as saving time and labor costs by not maintaining a rule database, which is required by traditional XSS attack detection methods. However, this topic came across some problems, such as poor generalization ability, significant false negative rate (FNR) and false positive rate (FPR). Moreover, the automatic clustering property of graph convolutional networks (GCN) has attracted the attention of researchers. In the field of natural language process (NLP), the results of graph embedding based on GCN are automatically clustered in space without any training, which means that text data can be classified just by the embedding process based on GCN. Previously, other methods required training with the help of labeled data after embedding to complete data classification. With the help of the GCN auto-clustering feature and labeled data, this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a URL into a word homogeneous graph based on word co-occurrence relationships. Then, GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification results. Experimental results show that GCNXSS achieved successful results with accuracy, precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%, 99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a lower FNR and FPR with stronger generalization ability.