
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 12, Dec. 2022 4008
Copyright ⓒ 2022 KSII

This work was supported in part by National Natural Science Foundation of China (U20B2045).

http://doi.org/10.3837/tiis.2022.12.013 ISSN : 1976-7277

GCNXSS: An Attack Detection Approach
for Cross-Site Scripting Based on Graph

Convolutional Networks

Hongyu Pan1, Yong Fang1, Cheng Huang1*, Wenbo Guo1, and Xuelin Wan2
1 School of Cyber Science and Engineering, Sichuan University

Chengdu, 610065, China
[e-mail: opcodesec@gmail.com]

2 China Merchants Bank
Shenzhen, 518057, China

[e-mail: wanxuelin@cmbchina.com]
*Corresponding author: Cheng Huang

Received March 20, 2022; revised October 3, 2022; accepted October 24, 2022;

published December 31, 2022

Abstract

Since machine learning was introduced into cross-site scripting (XSS) attack detection, many
researchers have conducted related studies and achieved significant results, such as saving
time and labor costs by not maintaining a rule database, which is required by traditional XSS
attack detection methods. However, this topic came across some problems, such as poor
generalization ability, significant false negative rate (FNR) and false positive rate (FPR).
Moreover, the automatic clustering property of graph convolutional networks (GCN) has
attracted the attention of researchers. In the field of natural language process (NLP), the results
of graph embedding based on GCN are automatically clustered in space without any training,
which means that text data can be classified just by the embedding process based on GCN.
Previously, other methods required training with the help of labeled data after embedding to
complete data classification. With the help of the GCN auto-clustering feature and labeled data,
this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the
dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a
URL into a word homogeneous graph based on word co-occurrence relationships. Then,
GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification
results. Experimental results show that GCNXSS achieved successful results with accuracy,
precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%,
99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a
lower FNR and FPR with stronger generalization ability.

Keywords: Web security, Cross-site Scripting, Graph Convolutional Networks(GCN)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 12, December 2022 4009

1. Introduction

With the continuous development of information technology, Web applications have
become more abundant and have penetrated all corners of people's lives. Web applications
occupy a higher proportion of people's lives and contain more and more value. Therefore, Web
applications have become the main target of attackers. According to Precise Security's research,
nearly 40% of all attacks recorded by security experts are XSS attacks [1]. In addition, the
OWASP Top 10 released 2017 shows that XSS remains one of the most threatening attack
methods [2].

Cross-site scripting (XSS) is a common code-embedding vulnerability in Web applications,
with two-thirds of all Web applications being vulnerable to XSS [2]. The attacker can use the
XSS vulnerability to construct a malicious script code embedded in the Web page visited by
ordinary users. Once ordinary users visit the page embedded with malicious script code, the
attacker will construct a malicious script code that can carry out the theft of user accounts,
phishing, illegal money transfer, and other malicious operations. An XSS vulnerability is also
one of the most harmful web application vulnerabilities. Furthermore, it is one of the primary
attack methods of web attacks, causing significant damage to the economy and personal
privacy [3]. To defend against code embedded vulnerabilities like XSS, 94% of the
applications were tested for some form of injection [4].

XSS attacks are a problem that cannot be ignored in Web security, and many researchers
have conducted much research on the field of XSS attacks detection. However, with the
continuous development of information technology, XSS attack is transforming and becoming
diversified [5], resulting in increasing difficulty in detecting XSS attack.

Traditional XSS attack detection methods need to maintain a rule database, and each rule in
the rule database needs to be extracted by security experts, which can take a lot of time.
Moreover, the accuracy of the detection method depends on the quality of the rule database,
and the poor quality of the rule database will lead to poor results in detecting XSS attacks.
Traditional XSS attack detection methods have difficulty dealing with these problems. Since
the introduction of machine learning techniques into XSS attack detection, many researchers
have conducted related researches and achieved remarkable results, such as applying SVM,
Naive Bayes, ADTree, and other methods to the field of XSS attack detection [6].

However, according to the literature review, the existing XSS attack detection methods
based on machine learning still have significant shortcomings, such as significant FNR and
FPR [6]. The impact caused by FNR is more significant than the increased labor cost caused
by FPR. Once an XSS attack evades the security system, it is likely to cause damage to the
system. However, the existing researches mostly ignore them. Meanwhile, most existing
methods also ignore the efficiency of the XSS attack detection system. Few researchers have
paid attention to the spent time processing a large amount of data. Besides, the generalization
ability of XSS attack detection methods is an issue. These detection methods often perform
well on an experimental dataset, but do not work properly on another dataset. This greatly
limits the applicability of machine learning and deep learning based XSS attack detection
methods.

The automatic clustering property of GCN is helpful to solve the above problem. In the field
of NLP, the results of graph embedding using GCN are automatically clustered in space
without any training. Based on graph embedding using GCN, labeled data is used to train GCN
and the results will be expected.

In this research, with the help of the GCN auto-clustering feature and labeled data, an XSS
attack detection approach (called GCNXSS) is proposed to mine the dependencies between

4010 Pan et al.: GCNXSS: An Attack Detection Approach for Cross-Site
 Scripting Based on Graph Convolutional Networks

the units that constitute an XSS payload and solve the above problems. After data
preprocessing, GCNXSS converts a URL into a word homogeneous graph based on word co-
occurrence relationships. Then GCNXSS inputs the graph into the GCN model for graph
embedding and classification.

Various metrics were used to evaluate the proposed method experimentally in this research.
The proposed method achieves advanced results on the test dataset. GCNXSS based on word
homogeneous graph achieved the best results with accuracy, precision, recall, F1-score, FNR,
FPR, and spent time scores of 99.97%, 99.75%, 99.96%, 99.86%, 0.03%, 0.03%, and
0.0461ms. The main contributions are as follows.
 This research proposes an approach for XSS attack detection based on GCN (called

GCNXSS) and formulates the XSS attack detection problem as a graph classification
task over word homogeneous graphs.

 This research proposes an approach for converting URLs into word homogeneous
graphs based on word co-occurrence relationships, enabling GCN to perform graph
embedding and mine the dependencies between the units that constitute an XSS
payload.

 This research experimentally evaluates the proposed method on the test dataset using
various metrics such as precision, recall, FNR, FPR, etc., and compares it with other
machine learning methods. Besides, using all the data from the difficult dataset as the
generalized dataset, the method also performs well on the generalized dataset.

The remainder of this paper is systematized as follows. Section 2 discusses related work

and analyzes the shortcomings of previous studies. Section 3 offers the key details about the
proposed method, including preprocessing, graph construction, GCN model, and classifier.
Section 4 presents the experimental design, the results of model parameter optimization, and
the comparative experimental results of this research. Section 5 discusses and analyzes the
results of the experiments. Section 6 concludes this research, focusing on its significance and
highlighting key future research directions.

2. Related Work
XSS detection has always been an important research field in Web security. Many researchers
have conducted much research on this field in the past ten years and published many research
results. These research results can be divided into XSS vulnerability mining and XSS attack
detection.

In terms of XSS vulnerability mining, the principle is mainly to discover the vulnerable
points of XSS vulnerabilities through mining to fix the corresponding defects as
comprehensively as possible. XSS vulnerability mining methods are further divided into static,
dynamic, and hybrid analysis based on detection and analysis methods. Static analysis is the
source code analysis, which has the advantage of detecting vulnerabilities that an attacker may
exploit without executing the application. To detect XSS vulnerabilities in Web applications,
Pixy, a static analysis tool for the PHP language, was introduced by Nenad et al. [7]. However,
not all security problems come from the source code, but also from software design flaws.
Static analysis would not be able to find vulnerabilities that require a deep understanding of
the code structure or design, and also has a high false positive rate.

On the other hand, dynamic analysis is based on simulated attacks, and its focus and
difficulty lie in generating attack vectors. The quality of the generated attack vectors will
directly affect the results of vulnerability mining. Bernhard et al. use the dependencies of the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 12, December 2022 4011

input parameters to obtain the syntax of the attack vectors and then use the combined testing
method to generate the structured attack vectors [8]. Mahmoud et al. propose a syntax-based
attack generator to automate the generation of XSS test inputs to evaluate XSS vulnerabilities
in target web pages due to mishandling of data encoding [9]. However, dynamic analysis
cannot find all vulnerabilities because some of the components are not running at all.

On the other hand, the hybrid analysis combines static and dynamic analysis. William et al.
propose a lightweight hybrid approach for detecting DOM-type XSS vulnerabilities with 3.43
times lower computational overhead and detects 94.5% of the vulnerabilities [10]. However,
numerous solutions have been proposed, but no single solution can altogether remove the flaws
present in the program source code [11].

In terms of XSS attack detection, the principle is mainly to detect whether the user behavior
is abnormal to filter out the possible XSS attacks. Client-side detection methods, server-side
detection methods and client-server detection methods are the results of the mainstream
classification of XSS detection methods. Moreover, machine learning is introduced into the
field of XSS attack detection and is heavily used by many researchers. For client-side detection,
many researchers have embedded rule-based detector into the front end to filter out a large
number of missteps. The XSS Auditor proposed by Danielet al. is used by Google Chrome for
many users [12]. Riccardo et al. use a rule-based algorithm and a set of policies to detect XSS
attacks [13]. Shashank et al. propose a Google Chrome extension based on contextual
dependencies for detecting XSS attacks [14]. Detectors deployed on the client side are useful
in that they filter out incorrect input from normal users. But for an attacker with ulterior
motives, these detectors can be easily bypassed. Therefore, it is not enough to use client-side
detection to defend against XSS attacks, but server-side detection is also required.

For server-side detection, the detector is typically deployed on the server of the Web
application. Martin et al. detect reflected XSS attacks by examining the input data and output
data [15]. Zhou et al. present a Bayesian network-based attack detection method [5]. The
method uses threat intelligence and domain knowledge to construct Bayesian networks and
proposes an analysis method to interpret the detection results further. Experiments show that
the method outperforms other methods such as SVM, random forest, and decision tree in most
cases. Its accuracy reaches 98.54%. However, it is not validated using other performance
metrics. Iram et al. propose a detection method using genetic algorithms, statistical inference,
and reinforcement learning [16]. This approach applies genetic algorithms, which are widely
used in the static analysis, to XSS attack detection, with statistical inference results used to
determine the state of vulnerabilities present. It then uses reinforcement learning to adapt to
unknown XSS attacks. Its accuracy, precision, recall and F1 values are 99.67%, 99.50%,
99.56%, 99.52% respectively. Fang et al. propose a method called DeepXSS, which is based
on circular decoding and LSTM model to extract XSS features for training [17]. Its precision,
recall, and F1 values are 99.5%, 97.9%, and 98.7%, respectively. Again, these two articles do
not mention FPR, FNR, and running time. Mohammed et al. propose a hybrid feature selection
method based on IG and SBS and uses GBDT integrated learning technique for XSS detection,
which can provide higher accuracy and detection rate [18]. In addition, a comparison is made
with other methods for training time and testing time. The research provides a more
comprehensive test of the proposed method with accuracy=99.59%, precision=99.50%,
recall=99.02%, false-positive rate=0.20%, false-negative=0.98%, and AUC score= 99.41%.

Client-side detection and server-side detection are not mutually exclusive; in practice, the
two are typically used jointly in deployments. For client-server detection, Trevor et al. resist
XSS attacks by embedding a policy in the web page [19]. The policy only supports the browser
to run fixed scripts, while the others cannot be executed. This policy can be ideally enforced

4012 Pan et al.: GCNXSS: An Attack Detection Approach for Cross-Site
 Scripting Based on Graph Convolutional Networks

by browsers that know when to run scripts. Wassermann et al. propose a method for detecting
XSS vulnerabilities based on detecting input data [20]. The method defends against XSS
attacks by detecting whether user input causes the browser's JavaScript engine to be invoked.
Van Gundy et al. propose a method to distinguish unreliable content in Web pages by
randomizing the HTML tags and attributes in each Web page, called Noncespaces [21].
Trusted content in Web pages can be easily distinguished by the client from unreliable content
constructed by the attacker as long as the random mapping is not broken by the attacker.

GCN may be used to solve the problems mentioned above. GCN is a generalized form of
CNN that extends convolution to graphs while using several convolutional layers instead of
circular iterations of the original GNN to achieve convergence of the whole graph. Thus, GCN
is a deep neural network that can learn directly on graph data, enabling the extraction of
information about the graph structure in addition to semantic features. GCN has an excellent
performance in computer vision, natural language processing, program verification, and
program reasoning [22]. In particular, in the field of NLP, GCN has an automatic clustering
property, and the results of graph embedding using GCN can be automatically clustered in
space without any training [23]. XSS attack detection is similar to text classification tasks in
the field of NLP, and this property of GCN is useful. Moreover, on the basis of graph
embedding using GCN, the expected results are obtained by training the GCN using labeled
data.

At present, GCN is divided into spectral-based GCN and spatial-based GCN. The basic
principle of spectral-based GCN is to treat the graph as a signal for processing, and the
convolution process is the process of noise removal for the signal using filters. At present, the
more representative spectral-based GCN models are ChebNet [24], 1stChebNet [23], Spectral
CNN [25] and so on. The idea of spatial-based GCN is based on information propagation over
space. The more representative spatial-based GCN models are GraphSAGE [26], MPNN [27],
PATCHY-SAN [28], DCNN [29], etc. Spatial-based GCN has received more attention from
researchers compared to spectral-based GCN. The main reason is that spectral-based GCN
requires a full graph Laplacian function, which becomes very difficult to handle for large
graphs. In contrast, spatial-based GCN, based on the spatial spread of information, can process
some nodes without processing the whole graph at once, which has higher efficiency,
flexibility, and versatility.

3. Methodology
Receiving inspiration from GCN research results in the field of NLP [23, 30], this research
proposes an XSS attack detection method based on GCN called GCNXSS. The proposed
approach proceeds as follows. First, GCNXSS performs preprocessing on the data, including
generalization and tokenization. A URL is divided into a set of words. Then, GCNXSS
performs graph construction, which transforms a set of words into a word homogeneous graph
based on word co-occurrence relationships. This part is divided into edge relation extraction,
which extracts PMI from the preprocessed data as the edge weight of the graph, and word
embedding, which obtains the node features (Word2Vec) of the graph through training. Finally,
GCNXSS inputs the constructed graph into GCN for graph embedding and trains a classifier
to distinguish XSS samples from benign samples. Fig. 1 shows the framework of the proposed
method.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 12, December 2022 4013

I
W2

W4

W1

W3

O W2

W4

W1

W3

- - -
Hidden
Layers

Word Homogeneous Graph Word Representation

Yi

Readout

Graph
Representation

GCN Model

Non-XSS

XSSGCN Model
Dataset

Word

...

Word

URL

WordGeneralization

Tokenization

Preprocessing

PMI

Word2Vec As Node feature

As Edge Weight

Graph Construction Classifier

Fig. 1. The framework of the proposed method

3.1 Preprocessing

3.1.1 Generalization
The confrontation between attackers and defenders has been going on for many years.
Attackers try to bypass the defenses of security systems by encoding the code, inserting useless
HTML tags and parameters into the payload, etc. In addition, domain information and numeric
information in the payload is not helpful in detecting XSS attacks. As a result, the input data
contains much redundant information. To reduce redundant information, this research uses the
following measures to generalize the data: First, all characters in the input data are changed to
lowercase. Then, the input data is decoded. Moreover, all the digits in the input data are
replaced with '0'. Finally, all URLs in the input data are replaced with 'http://u'.

3.1.2 Tokenization
XSS payloads are constructed with certain rules, and the pre-processing phase requires
segmenting its constituent elements, such as function names and tag names, for feature
extraction. In order to tokenize the input data after generalization, the rules of the tokenization
is shown below:
 The context between ' and ", such as 'attack'.
 URL, such as http and https.
 Script label, such as <script>.
 Start label, such as <h1.
 Function name, such as topic=.
 Function body, such as alert(.
 Words make up of alphanumeric characters, such as user12.
After this operation, each sample in the input data will be divided into a set of segments

called words. Some examples are shown in Table 1.

4014 Pan et al.: GCNXSS: An Attack Detection Approach for Cross-Site
 Scripting Based on Graph Convolutional Networks

Table 1. Some examples of preprocessing

Origin URL Words
site=message&msg=<script>alert(1)</script> site= message msg= <script> alert(0) </script>
q=%3Ciframe+src%3D%22http%3A%2F%2

Fxssed.com%22%3E q= <iframe src= http://u >

Itemid=%22onmouseover=alert%28document
.cookie%29%20bad=%22

itemid= onmouseover= alert(document.cookie)
bad=

sid=&ring=hentff98&id=&list sid= amp ring= hentff0 amp id= amp list
usernum=3614006703 usernum= 0

amp

ring= hentff0 amp id= amp listsid=

onmouse
over= alert(document

.cookie) bad=itemid=

For a sample after Tokenlization: “sid= amp ring= hentff0 amp id= amp list”

For a sample after Tokenlization: “itemid= onmouseover= alert(document.cookie) bad=”

window1

window2

window3

window4

 sliding

window1

window2

 sliding
Fig. 2. Some examples of sliding window

3.2 Word Homogeneous Graph Construction
Word homogeneous graph is a homogeneous graph with words as nodes after operations in
Section 3.1.2. A sample, whether it is an XSS malicious sample or a benign sample, will be
transformed into a word homogeneous graph, as shown in Fig. 1. The number of nodes in the
word homogeneous graph is the number of words in a sample. The graphs use Word2Vec [31]
as the feature of the nodes. This research also found using Word2Vec [31] achieves better
results than using GloVe [32] in the preliminary experiments. Each word embedding vector
corresponds to a node feature. Point-wise mutual information (PMI) is used to measure the
semantic correlation before two word nodes in the graph. When the PMI value is less than or
equal to 0, then there is no correlation between the corresponding two word nodes. When the
PMI value is greater than 0, then the corresponding two word nodes possess correlation. The
higher the correlation, the larger the value of PMI; the lower the correlation, the smaller the
value of PMI. In this research, only edges are added between the two word nodes that possess
correlation. In addition, PMI will be calculated by using a sliding window of fixed size, as
shown in Fig. 2. The PMI is calculated as shown in the following equation.

PMI(i, j) = log p(i,j)
p(i)p(j)

 (1)

p(i, j) = #W(i,j)
#W

 (2)

p(i) = #W(i)
#W

 (3)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 12, December 2022 4015

where #W(i) is the number of sliding windows in the dataset that contain word i, #W(i,j) is
the number of sliding windows that contains both words i and j, and #W is the total number of
sliding windows in the dataset.

3.3 GCN Layer
For the word homogeneous graph, this research chooses 1stChebNet [23], the most
representative model in spectral-based GCN, for graph classification. According to the result
in the literature [23, 30, 33], the performance of a two-layer GCN is good enough as far as
feature extraction is concerned. GCN with three, or even more, layers do not bring additional
performance improvement. Therefore, a two-layer GCN is able to extract enough features from
the constructed word isomorphism graph for downstream tasks. Moreover, python package
DGL has encapsulated the graph convolution proposed in the literature [23], the simple two-
layer GCN is easily implemented. In addition, the input dimension is the word vector
dimension, the hidden layer dimension is 20, and the output dimension is the same size as the
label set (XSS, Non-XSS).

3.4 Classifiers
After the graph embedding is done from the graph data using GCN, the graph representation
is fed to a classifier for the classification task. In this article, GCNXSS only uses a simple
binary classifier as shown in Algorithm 1. If the detection results of the proposed method are
better than existing methods in this case, then it is more indicative of the usability of GCN in
the field of XSS attack detection.

Algorithm 1: How to classify (hardmax)
 Input: The array of features for every sample, features
 Output: The array of labels for every feature, labels
 labels is initialized to a null array ;
 for item in features do
 if item[0] > item[1] then
 labels.add('Non-XSS');
 else
 labels.add('XSS');
 end
 end
 return labels;

4. Experiment
This section introduces the datasets and metrics, and then conducts a series of experiments to
answer the following research questions:
 RQ 1. With the help of GCN and labeled data, does GCNXSS effectively detect XSS

attacks and solve problems such as FNR and FPR?
 RQ 2. Does GCNXSS outperform existing XSS attack detection methods?

ALL experiments were operated on the PyCharm Community Edition 2021.1.1 x64
platform. The computer used to run the program had 1 CPU of i5-10600KF with 4.10GHZ

4016 Pan et al.: GCNXSS: An Attack Detection Approach for Cross-Site
 Scripting Based on Graph Convolutional Networks

and 16GB RAM. At the same time, we program in Python 3.6.13, Pytorch1.5.1, pandas 1.1.5,
NumPy 1.19.2, and DGL 0.7.1 software environment.

4.1 Datasets
This research used 151,658 samples collected from the GitHub
repository(https://github.com/duoergun0729/1book/tree/master/data), including 16,151 XSS
malicious samples and 135,507 benign samples. The dataset is divided into training, validation,
and testing datasets in the ratio of 6:2:2. Table 2 shows the detailed partitions of the datasets.
In addition, this research merged the dataset on the Kaggle platform
(https://www.kaggle.com/datasets/syedsaqlainhussain/cross-site-scripting-xss-dataset-for-
deep-learning) with the dataset used in the literature [34] to construct a difficult dataset
containing 13,726 samples, with 6,312 benign samples and 7,414 malicious samples. The data
for the malicious samples were obtained from OWASP, PortSwigger, and html5sec.org. The
difficult dataset was used to perform generalization experiments.

Table 2. Dataset subdivision
Name Benign Malicious Total

Training dataset 81,304 9,690 90,994
Validation dataset 27,101 3,230 30,331

Testing dataset 27,102 3,231 30,333
Total dataset 135,507 16,151 151,658

Table 3. Confusion matrix

 Actual XSS Actual non-XSS
Predicted XSS TP FP

Predicted Non-XSS FN TN

4.2 Evaluation Metrics
In this research, the proposed method's performance is employed to analyze the methods using
accuracy, precision, recall, F1-score, FNR, and FPR. The malicious sample was denoted as
the positive (P) class, and the benign sample was denoted as the negative (N) class. These
metrics are computed based on a confusion matrix (see Table 3), and they are defined as:

accuracy = TP+TN
TP+FN+FP+TN

 (4)

precision = TP
TP+FP

 (5)

recall = TP
TP+FN

 (6)

f1 − score = 2∗precison∗recall
precison+recall

 (7)

FNR = FN
TP+FN

= 1 − recall (8)

FPR = FP
FP+TN

 (9)

4.3 Experimental Results Analysis
To verify whether GCN can extract features of XSS attacks, this research performs a
preliminary experiment using randomly initialized GCN parameters based on fixed
composition-related parameters. To enhance the convincing power, this research uses a real

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 12, December 2022 4017

dataset (https://github.com/das-lab/deep-xss) from the GitHub repository containing 64,833
real samples in addition to experiments on the test dataset. After only one training, the results
are very satisfactory, as shown in Table 4. It is easy to see that the accuracy of GCNXSS based
on testing dataset is close to 0.98 after one training, and the accuracy of GCNXSS based on
real dataset is close to 0.97. Moreover, all other metrics have good performance. This can
deduce that GCN is able to aggregate XSS feature information.

Table 4. Performance of the proposed method in the preliminary experiment after one training
Dataset Accuracy Precision Recall F1-score FNR FPR

Testing dataset 0.9827 0.9093 0.9307 0.9198 0.0693 0.0111
Real dataset 0.9705 0.9674 0.9758 0.9716 0.0242 0.0350

Moreover, this research also found using homogeneous graphs achieves a better embedding

result than using heterogeneous graphs in the preliminary experiments. It is expected that the
reason for this situation is that too many elements in the heterogeneous graphs make it more
difficult for graph embedding based on GCN.

To obtain better performance, the parameters of GCNXSS are optimized and trained. When
the epoch is set to 50, the window size is set to 20, the word vector dimension is set to 300,
the word embedding method is set to Word2Vec CBOW, the loss function is set to cross-
entropy, the optimizer is set to Adam, and the rest of the parameters by default, the
performance results of GCNXSS are optimal, as shown in Table 5. From Table 5, GCNXSS
has promising results with low FNR and FPR. Besides, the accuracy, precision, recall, and F1-
score of GCNXSS also improves. It is easy to see how the labeled data can help to overcome
the problem of significant FNR and FPR on the basis of GCN.

Table 5. Performance of the proposed method based on different datasets after training

Dataset Accuracy Precision Recall F1-score FNR FPR Predicted
Time (ms)

Testing
dataset 0.9997 0.9975 0.9997 0.9986 0.0003 0.0003 0.0461

Real
dataset 0.9931 0.9979 0.9886 0.9932 0.0114 0.0022 0.0489

In addition, this research also tested the final model on the real dataset, as shown in Table

5. The performance of GCNXSS on the real dataset is still good, and the reduction in the
metrics is within acceptable limits compared to the performance on the testing dataset.

Answer to RQ 1: The experimental results prove that GCNXSS has promising performance
with low FNR and FPR. With the help of GCN and labeled data, GCNXSS can effectively
detect XSS attacks.

4.4 Comparison with Other Detectors
To demonstrate the advancement of the methods proposed in this research, this research uses
support vector machines (SVM), decision tree (DR), logistic regression (LR), k-nearest
neighbor (KNN), random forest (RF), naive bayes, and adaptive boosting (Adaboost) which
are machine learning methods compared with GCNXSS. The features used by these machine
learning methods are those proposed in the literature [5]. These features are broadly classified
into four categories: input length, sensitive characters, sensitive words, and redirected links.
These are also the main difference between XSS payload and normal data.

4018 Pan et al.: GCNXSS: An Attack Detection Approach for Cross-Site
 Scripting Based on Graph Convolutional Networks

Table 6. Comparison results with other machine learning detectors

Detector Accuracy Precision Recall F1-score FNR FPR Predicted
Time (ms)

SVM 0.9942 0.9881 0.9573 0.9724 0.0427 0.0014 0.8467
Decision Tree 0.9955 0.9951 0.9622 0.9784 0.0378 0.0006 0.0422

Logistic
Regression 0.9990 0.9928 0.9979 0.9954 0.0021 0.0009 0.0423

KNN 0.9987 0.9957 0.9924 0.9940 0.0076 0.0005 0.6986
Random
Forest 0.9920 0.9936 0.9309 0.9612 0.0691 0.0007 0.0427

Naive Bayes 0.9916 0.9279 0.9988 0.9620 0.0012 0.0092 0.0426
Adaboost 0.9993 0.9969 0.9967 0.9968 0.0033 0.0004 0.0571
GCNXSS 0.9997 0.9975 0.9997 0.9986 0.0003 0.0003 0.0461

Table 7. Comparison results with previous detectors

Detector Accuracy Precision Recall F1-score FNR FPR Predicted
Time (ms)

Fang et al.,
2018 [17] 0.9896 0.9966 0.9832 0.9898 0.0168 0.0036 0.2678

Mokbal et al.,
2021 [18] 0.9966 0.9958 0.9725 0.9840 0.0275 0.0005 0.0532

GCNXSS 0.9997 0.9975 0.9997 0.9986 0.0003 0.0003 0.0461

The results of the comparison on the testing dataset are shown in Table 6. Traditional
machine learning methods almost always have a high accuracy, precision, recall, and F1-score.
At this point, GCNXSS only has a weak advantage. However, traditional machine learning
methods is slightly deficient in FPR and FNR. In contrast, GCNXSS is more advantageous
because its FPR and FNR are close to 0. And the predicted time is also in the top. In terms of
performance metrics, GCNXSS is better compared to traditional machine learning methods.

To further assess the advantages of the proposed GCNXSS, this research compared with the
detectors proposed by the literature [17, 18] on the testing dataset. The literature [17] extracts
the features of XSS payloads based on recurrent decoding and word2vec, and trains them using
Long Short-Term Memory (LSTM) recurrent neural networks. The literature [18] proposes a
hybrid feature selection method based on IG and SBS with GBDT integrated learning
technique for XSS detection. The comparison results are shown in Table 7. As with traditional
machine learning methods, these detectors are also slightly deficient in FPR and FNR,
although they have high accuracy, precision, recall, and F1-score. From Table 7, it is can see
that GCNXSS has a slight advantage over the previous detectors.

To further demonstrate the advantages of the GCNXSS method, this research conducts
generalization experiments on the difficult dataset. The detectors that appear in Table 6 and
Table 7 use a model trained based on the testing dataset with all data from the difficult dataset
as input. The results of the generalization experiments are shown in Table 8 and Table 9,
which also be seen in Fig. 3 and Fig. 4.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 12, December 2022 4019

Table 8. Results of generalization experiments with other machine learning detectors
Detector Accuracy Precision Recall F1-score FNR FPR

SVM 0.6356 0.5975 0.9909 0.7455 0.0091 0.7795
Decision Tree 0.6590 0.6138 0.9898 0.7577 0.0102 0.7274

Logistic
Regression 0.5920 0.5698 0.9908 0.7235 0.0092 0.8738

KNN 0.6414 0.6016 0.9900 0.7484 0.0100 0.7657
Random Forest 0.5955 0.5720 0.9896 0.7250 0.0104 0.8647

Naive Bayes 0.5503 0.5451 0.9984 0.7052 0.0016 0.9731
Adaboost 0.6618 0.6158 0.9901 0.7593 0.0099 0.7215
GCNXSS 0.8119 0.7583 0.9610 0.8477 0.0390 0.3665

Table 9. Results of generalization experiments with previous detectors

Detector Accuracy Precision Recall F1-score FNR FPR
Fang et al.,
2018 [17] 0.6548 0.6138 0.9879 0.7572 0.0121 0.7436

Mokbal et al.,
2021 [18] 0.5942 0.5715 0.9864 0.7237 0.0136 0.8639

GCNXSS 0.8119 0.7583 0.9610 0.8477 0.0390 0.3665

Fig. 3. Results of generalization experiments with other machine learning detectors

4020 Pan et al.: GCNXSS: An Attack Detection Approach for Cross-Site
 Scripting Based on Graph Convolutional Networks

Fig. 4. Results of generalization experiments with previous detectors

After the generalization experiments, it is easy to see that GCNXSS has significant
advantages in all performance measures except for the recall and FNR, which do not differ
much from other detectors. It can be concluded that GCNXSS has stronger generalization
ability than other detectors and has a clear advantage in FPR.

Answer to RQ 2: Traditional machine learning methods and previous detectors face poor
generalization ability, significant FPR and FNR problems, although they have high accuracy,
precision, recall, and F1-score. This research can conclude that GCNXSS has a stronger
generalization ability with low FNR and FPR compared to the other methods.

5. Discussion
This research explores the application of GCN in XSS attack detection. Based on the
experimental results, this research clarifies the conclusion that GCN can indeed be applied in
the field of XSS attack detection. However, although the GCN is in the lead with other machine
learning models in terms of predicted time, the time required for graph construction in the
experiments is much greater than the time required for feature extraction. From this point on,
optimizing composition methods is a subsequent priority in this area. In addition, most of the
current XSS attack detection methods only perform well on the experimental datasets. Once
the data source is changed, the performance of these methods will be greatly reduced. Using
more advanced methods with better quality datasets may be able to help solve this problem.
Besides, the advanced results obtained in this research using only GCN extraction results and
annotation information, and the performance of the proposed method will be even better after
using more complex classifiers and introducing attention mechanisms on top of this method.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 12, December 2022 4021

6. Conclusion
This research proposes an XSS attack detection method based on GCN called GCNXSS. First,
GCNXSS performs a preprocessing operation for the data. Then, GCNXSS performs graph
construction, which transforms a URL into a word homogeneous graph based on word co-
occurrence relationships. Finally, GCNXSS inputs the constructed graph into GCN for graph
embedding and classification. In the experiments, this research first verifies the ability of GCN
to extract the features of XSS attacks through preliminary experiments. Finally, the superiority
of GCNXSS is demonstrated by comparing it with existing XSS attack detection methods. In
the future, the research task is to explore more composition methods in the field of XSS attack
detection. The direction of exploration is to construct graph structures that can contain more
XSS payload features as a way to increase the generalization ability of detection methods and
reduce detection time. In addition, because GCN shows good performance in the field of XSS
attack detection, another research task is to apply GCN to more fields of Web attack detection,
such as SQL injection detection, JavaScript malicious code detection, and so on.

References
[1] Precise Security, "Cross-Site Scripting (XSS) Makes Nearly 40% of All Cyber Attacks in 2019,"

Website, 2020. [Online]. Available: https://www.precisesecurity.com/articles/cross-site-script ing-
xss-makes-nearly-40-of-all-cyber-attacks-in-2019/

[2] OWASP, "OWASP top 10 - 2017 The Ten Most Critical Web Application Security Risks,"
Website, 2017. [Online]. Available: https://www.owasp.org/images/7/72/OWASP_To p_10-
2017_(en).pdf

[3] J. Fonseca, N. Seixas, M. Vieira, and H. Madeira, "Analysis of Field Data on Web Security
Vulnerabilities," IEEE Transactions on Dependable and Secure Computing, vol. 11, no. 2, pp. 89-
100, 2014. Article (CrossRef Link)

[4] OWASP, "OWASP top 10 - 2021 The Ten Most Critical Web Application Security Risks,"
Website, 2021. [Online]. Available: https://owasp.org/Top10/

[5] Y. Zhou and P. Wang, "An ensemble learning approach for XSS attack detection with domain
knowledge and threat intelligence," Computers & Security, vol. 82, pp. 261-269, 2019.
Article (CrossRef Link)

[6] U. Sarmah, D. K. Bhattacharyya, and J. K. Kalita, "A survey of detection methods for XSS
attacks," Journal of Network and Computer Applications, vol. 118, pp. 113-143, 2018.
Article (CrossRef Link)

[7] N. Jovanovic, C. Kruegel, and E. Kirda, "Pixy: A Static Analysis Tool for Detecting Web
Application Vulnerabilities (Short Paper)," in Proc. of IEEE Computer Society, USA, pp. 258–263,
2006. Article (CrossRef Link)

[8] D. E. Simos, B. Garn, J. Zivanovic, and M. Leithner, "Practical Combinatorial Testing for XSS
Detection using Locally Optimized Attack Models," in Proc. of ICSTW, pp. 122-130, 2019.
Article (CrossRef Link)

[9] M. Mohammadi, B. Chu, and H. R. Lipford, "Detecting cross-site scripting vulnerabilities through
automated unit testing," in Proc. of QRS, pp. 364-373, 2017. Article (CrossRef Link)

[10] W. Melicher, C. Fung, L. Bauer, and L. Jia, "Towards a Lightweight, Hybrid Approach for
Detecting DOM XSS Vulnerabilities with Machine Learning," in Proc. of the Web Conference
2021, pp. 2684-2695, 2021. Article (CrossRef Link)

[11] G. Deepa and P. S. Thilagam, "Securing web applications from injection and logic vulnerabilities:
Approaches and challenges," Information and Software Technology, vol. 74, pp. 160-180, 2016.
Article (CrossRef Link)

[12] D. Bates, A. Barth, and C. Jackson, "Regular Expressions Considered Harmful in Client-Side XSS
Filters," in Proc. of ICWWW, New York, NY, USA, pp. 91–100, 2010. Article (CrossRef Link)

http://doi.org/10.1109/TDSC.2013.37
https://doi.org/10.1016/j.cose.2018.12.016
https://doi.org/10.1016/j.jnca.2018.06.004
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1109/ICSTW.2019.00040
https://doi.org/10.1109/QRS.2017.46
https://doi.org/10.1145/3442381.3450062
https://doi.org/10.1016/j.infsof.2016.02.005
https://doi.org/10.1145/1772690.1772701

4022 Pan et al.: GCNXSS: An Attack Detection Approach for Cross-Site
 Scripting Based on Graph Convolutional Networks

[13] R. Pelizzi and R. Sekar, "Protection, Usability and Improvements in Reflected XSS Filters," in
Proc. of ASIACCS, New York, NY, USA, p. 5, 2012. Article (CrossRef Link)

[14] S. Gupta and B. B. Gupta, "XSS-immune: A Google chrome extension-based XSS defensive
framework for contemporary platforms of web applications," Security and Communication
Networks, vol. 9, pp. 3966-3986, 2016. Article (CrossRef Link)

[15] M. Johns, B. Engelmann, and J. Posegga, "XSSDS: Server-Side Detection of Cross-Site Scripting
Attacks," in Proc. of ACSAC, pp. 335-344, 2008. Article (CrossRef Link)

[16] I. Tariq, M. A. Sindhu, R. A. Abbasi, A. S. Khattak, O. Maqbool, and G. F. Siddiqui, "Resolving
cross-site scripting attacks through genetic algorithm and reinforcement learning," Expert Systems
with Applications, vol. 168, p. 114386, 2021. Article (CrossRef Link)

[17] Y. Fang, Y. Li, L. Liu, and C. Huang, "DeepXSS: Cross site scripting detection based on deep
learning," in Proc. of ICCAI, pp. 47-51, 2018. Article (CrossRef Link)

[18] F. M. M. Mokbal, W. Dan, W. Xiaoxi, Z. Wenbin, and F. Lihua, "XGBXSS: An Extreme Gradient
Boosting Detection Framework for Cross-Site Scripting Attacks Based on Hybrid Feature
Selection Approach and Parameters Optimization," Journal of Information Security and
Applications, vol. 58, p. 102813, 2021. Article (CrossRef Link)

[19] T. Jim, N. Swamy, and M. Hicks, "Defeating Script Injection Attacks with Browser-Enforced
Embedded Policies," in Proc. of ICWWW, New York, NY, USA, pp. 601–610, 2007.
Article (CrossRef Link)

[20] G. Wassermann and Z. Su, "Static Detection of Cross-Site Scripting Vulnerabilities," in Proc. of
ICSE, New York, NY, USA, pp. 171–180, 2008. Article (CrossRef Link)

[21] M. Van Gundy and H. Chen, "Noncespaces: Using randomization to defeat cross-site scripting
attacks," Computers & Security, vol. 31, no. 4, pp. 612-628, 2012. Article (CrossRef Link)

[22] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, "A comprehensive survey on graph
neural networks," IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp.
4-24, 2021. Article (CrossRef Link)

[23] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks,"
arXiv preprint arXiv:1609.02907, 2016.

[24] M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with
fast localized spectral filtering," Advances in neural information processing systems, vol. 29, pp.
3844-3852, 2016. Article (CrossRef Link)

[25] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, "Spectral networks and locally connected
networks on graphs," arXiv preprint arXiv:1312.6203, 2013.

[26] W. Hamilton, Z. Ying, and J. Leskovec, "Inductive representation learning on large graphs,"
Advances in neural information processing systems, vol. 30, 2017. Article (CrossRef Link)

[27] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, "Neural message passing for
quantum chemistry," in Proc. of ICML, pp. 1263-1272, 2017. Article (CrossRef Link)

[28] M. Niepert, M. Ahmed, and K. Kutzkov, "Learning convolutional neural networks for graphs," in
Proc. of ICML, pp. 2014-2023, 2016. Article (CrossRef Link)

[29] J. Atwood and D. Towsley, "Diffusion-convolutional neural networks," Advances in neural
information processing systems, vol. 29, 2016.

[30] L. Yao, C. Mao, and Y. Luo, "Graph convolutional networks for text classification," in Proc. of
AAAI, vol. 33, pp. 7370-7377, 2019. Article (CrossRef Link)

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in
vector space," arXiv preprint arXiv:1301.3781, 2013.

[32] J. Pennington, R. Socher, and C. D. Manning, "Glove: Global vectors for word representation," in
Proc. of EMNLP, pp. 1532-1543, 2014. Article (CrossRef Link)

[33] Q. Li, Z. Han, and X.-M. Wu, "Deeper insights into graph convolutional networks for semi-
supervised learning," in Proc. of AAAI, 2018. Article (CrossRef Link)

[34] G. Xu, X. Xie, and S. Huang, "JSCSP: A Novel Policy-Based XSS Defense Mechanism for
Browsers," IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 2, pp. 862-878,
2022. Article (CrossRef Link)

https://doi.org/10.1145/2414456.2414458
https://doi.org/10.1002/sec.1579
https://doi.org/10.1109/ACSAC.2008.36
https://doi.org/10.1016/j.eswa.2020.114386
https://doi.org/10.1145/3194452.3194469
https://doi.org/10.1016/j.jisa.2021.102813
https://doi.org/10.1145/1242572.1242654
https://doi.org/10.1145/1368088.1368112
https://doi.org/10.1016/j.cose.2011.12.004
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.48550/arXiv.1606.09375
https://doi.org/10.48550/arXiv.1706.02216
https://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v48/niepert16
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.5555/3504035.3504468
https://doi.org/10.1109/TDSC.2020.3009472

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 12, December 2022 4023

Hongyu Pan received the B.Eng. degree in cyberspace security from Sichuan University,
Chengdu, China, in 2021, where he is currently pursuing the master’s degree with the School
of Cyber Science and Engineering. His current research interests include Web security and
artificial intelligence.

Yong Fang received the Ph.D degree from Sichuan University, Chengdu, China, in 2010.
He is currently a Professor with School of Cyber Science and Engineering, Sichuan
University, China. His research interests include network security, Web security, Internet of
Things, Big Data and artificial intelligence.

Cheng Huang received the Ph.D degree from Sichuan University, Chengdu, China, in 2017.
From 2014 to 2015, he was a visiting student at the School of Computer Science, University
of California, CA, USA. He is currently an Associate Professor at the School of Cyber
Science and Engineering, Sichuan University, Chengdu, China. His current research interests
include Web security, attack detection, artificial intelligence.

Wenbo Guo received the B.Eng. degree in cyberspace security from Sichuan University,
Chengdu, China, in 2020, where he is currently pursuing the master’s degree with the School
of Cyber Science and Engineering. His current research interests include Web security and
artificial intelligence.

Xuelin Wan received the M.S. degree from Peking University, Beijing, China, in 2010. He
is senior engineer working at China Merchants Bank, Shenzhen, China. His current research
interests include network security, machine learning and attack detection.

