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Abstract 

 
Since machine learning was introduced into cross-site scripting (XSS) attack detection, many 
researchers have conducted related studies and achieved significant results, such as saving 
time and labor costs by not maintaining a rule database, which is required by traditional XSS 
attack detection methods. However, this topic came across some problems, such as poor 
generalization ability, significant false negative rate (FNR) and false positive rate (FPR). 
Moreover, the automatic clustering property of graph convolutional networks (GCN) has 
attracted the attention of researchers. In the field of natural language process (NLP), the results 
of graph embedding based on GCN are automatically clustered in space without any training, 
which means that text data can be classified just by the embedding process based on GCN. 
Previously, other methods required training with the help of labeled data after embedding to 
complete data classification. With the help of the GCN auto-clustering feature and labeled data, 
this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the 
dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a 
URL into a word homogeneous graph based on word co-occurrence relationships. Then, 
GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification 
results. Experimental results show that GCNXSS achieved successful results with accuracy, 
precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%, 
99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a 
lower FNR and FPR with stronger generalization ability. 
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1. Introduction 

With the continuous development of information technology, Web applications have 
become more abundant and have penetrated all corners of people's lives. Web applications 
occupy a higher proportion of people's lives and contain more and more value. Therefore, Web 
applications have become the main target of attackers. According to Precise Security's research, 
nearly 40% of all attacks recorded by security experts are XSS attacks [1]. In addition, the 
OWASP Top 10 released 2017 shows that XSS remains one of the most threatening attack 
methods [2]. 

Cross-site scripting (XSS) is a common code-embedding vulnerability in Web applications, 
with two-thirds of all Web applications being vulnerable to XSS [2]. The attacker can use the 
XSS vulnerability to construct a malicious script code embedded in the Web page visited by 
ordinary users. Once ordinary users visit the page embedded with malicious script code, the 
attacker will construct a malicious script code that can carry out the theft of user accounts, 
phishing, illegal money transfer, and other malicious operations. An XSS vulnerability is also 
one of the most harmful web application vulnerabilities. Furthermore, it is one of the primary 
attack methods of web attacks, causing significant damage to the economy and personal 
privacy [3]. To defend against code embedded vulnerabilities like XSS, 94% of the 
applications were tested for some form of injection [4]. 

XSS attacks are a problem that cannot be ignored in Web security, and many researchers 
have conducted much research on the field of XSS attacks detection. However, with the 
continuous development of information technology, XSS attack is transforming and becoming 
diversified [5], resulting in increasing difficulty in detecting XSS attack. 

Traditional XSS attack detection methods need to maintain a rule database, and each rule in 
the rule database needs to be extracted by security experts, which can take a lot of time. 
Moreover, the accuracy of the detection method depends on the quality of the rule database, 
and the poor quality of the rule database will lead to poor results in detecting XSS attacks. 
Traditional XSS attack detection methods have difficulty dealing with these problems. Since 
the introduction of machine learning techniques into XSS attack detection, many researchers 
have conducted related researches and achieved remarkable results, such as applying SVM, 
Naive Bayes, ADTree, and other methods to the field of XSS attack detection [6]. 

However, according to the literature review, the existing XSS attack detection methods 
based on machine learning still have significant shortcomings, such as significant FNR and 
FPR [6]. The impact caused by FNR is more significant than the increased labor cost caused 
by FPR. Once an XSS attack evades the security system, it is likely to cause damage to the 
system. However, the existing researches mostly ignore them. Meanwhile, most existing 
methods also ignore the efficiency of the XSS attack detection system. Few researchers have 
paid attention to the spent time processing a large amount of data. Besides, the generalization 
ability of XSS attack detection methods is an issue. These detection methods often perform 
well on an experimental dataset, but do not work properly on another dataset. This greatly 
limits the applicability of machine learning and deep learning based XSS attack detection 
methods. 

The automatic clustering property of GCN is helpful to solve the above problem. In the field 
of NLP, the results of graph embedding using GCN are automatically clustered in space 
without any training. Based on graph embedding using GCN, labeled data is used to train GCN 
and the results will be expected. 

In this research, with the help of the GCN auto-clustering feature and labeled data, an XSS 
attack detection approach (called GCNXSS) is proposed to mine the dependencies between 
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the units that constitute an XSS payload and solve the above problems. After data 
preprocessing, GCNXSS converts a URL into a word homogeneous graph based on word co-
occurrence relationships. Then GCNXSS inputs the graph into the GCN model for graph 
embedding and classification. 

Various metrics were used to evaluate the proposed method experimentally in this research. 
The proposed method achieves advanced results on the test dataset. GCNXSS based on word 
homogeneous graph achieved the best results with accuracy, precision, recall, F1-score, FNR, 
FPR, and spent time scores of 99.97%, 99.75%, 99.96%, 99.86%, 0.03%, 0.03%, and 
0.0461ms. The main contributions are as follows. 
 This research proposes an approach for XSS attack detection based on GCN (called 

GCNXSS) and formulates the XSS attack detection problem as a graph classification 
task over word homogeneous graphs. 

 This research proposes an approach for converting URLs into word homogeneous 
graphs based on word co-occurrence relationships, enabling GCN to perform graph 
embedding and mine the dependencies between the units that constitute an XSS 
payload. 

 This research experimentally evaluates the proposed method on the test dataset using 
various metrics such as precision, recall, FNR, FPR, etc., and compares it with other 
machine learning methods. Besides, using all the data from the difficult dataset as the 
generalized dataset, the method also performs well on the generalized dataset. 

 
The remainder of this paper is systematized as follows. Section 2 discusses related work 

and analyzes the shortcomings of previous studies. Section 3 offers the key details about the 
proposed method, including preprocessing, graph construction, GCN model, and classifier. 
Section 4 presents the experimental design, the results of model parameter optimization, and 
the comparative experimental results of this research. Section 5 discusses and analyzes the 
results of the experiments. Section 6 concludes this research, focusing on its significance and 
highlighting key future research directions. 

2. Related Work 
XSS detection has always been an important research field in Web security. Many researchers 
have conducted much research on this field in the past ten years and published many research 
results. These research results can be divided into XSS vulnerability mining and XSS attack 
detection.  

In terms of XSS vulnerability mining, the principle is mainly to discover the vulnerable 
points of XSS vulnerabilities through mining to fix the corresponding defects as 
comprehensively as possible. XSS vulnerability mining methods are further divided into static, 
dynamic, and hybrid analysis based on detection and analysis methods. Static analysis is the 
source code analysis, which has the advantage of detecting vulnerabilities that an attacker may 
exploit without executing the application. To detect XSS vulnerabilities in Web applications, 
Pixy, a static analysis tool for the PHP language, was introduced by Nenad et al. [7]. However, 
not all security problems come from the source code, but also from software design flaws. 
Static analysis would not be able to find vulnerabilities that require a deep understanding of 
the code structure or design, and also has a high false positive rate.  

On the other hand, dynamic analysis is based on simulated attacks, and its focus and 
difficulty lie in generating attack vectors. The quality of the generated attack vectors will 
directly affect the results of vulnerability mining. Bernhard et al. use the dependencies of the 
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input parameters to obtain the syntax of the attack vectors and then use the combined testing 
method to generate the structured attack vectors [8]. Mahmoud et al. propose a syntax-based 
attack generator to automate the generation of XSS test inputs to evaluate XSS vulnerabilities 
in target web pages due to mishandling of data encoding [9]. However, dynamic analysis 
cannot find all vulnerabilities because some of the components are not running at all.  

On the other hand, the hybrid analysis combines static and dynamic analysis. William et al. 
propose a lightweight hybrid approach for detecting DOM-type XSS vulnerabilities with 3.43 
times lower computational overhead and detects 94.5% of the vulnerabilities [10]. However, 
numerous solutions have been proposed, but no single solution can altogether remove the flaws 
present in the program source code [11].  

In terms of XSS attack detection, the principle is mainly to detect whether the user behavior 
is abnormal to filter out the possible XSS attacks. Client-side detection methods, server-side 
detection methods and client-server detection methods are the results of the mainstream 
classification of XSS detection methods. Moreover, machine learning is introduced into the 
field of XSS attack detection and is heavily used by many researchers. For client-side detection, 
many researchers have embedded rule-based detector into the front end to filter out a large 
number of missteps. The XSS Auditor proposed by Danielet al. is used by Google Chrome for 
many users [12]. Riccardo et al. use a rule-based algorithm and a set of policies to detect XSS 
attacks [13]. Shashank et al. propose a Google Chrome extension based on contextual 
dependencies for detecting XSS attacks [14]. Detectors deployed on the client side are useful 
in that they filter out incorrect input from normal users. But for an attacker with ulterior 
motives, these detectors can be easily bypassed. Therefore, it is not enough to use client-side 
detection to defend against XSS attacks, but server-side detection is also required.  

For server-side detection, the detector is typically deployed on the server of the Web 
application. Martin et al. detect reflected XSS attacks by examining the input data and output 
data [15]. Zhou et al. present a Bayesian network-based attack detection method [5]. The 
method uses threat intelligence and domain knowledge to construct Bayesian networks and 
proposes an analysis method to interpret the detection results further. Experiments show that 
the method outperforms other methods such as SVM, random forest, and decision tree in most 
cases. Its accuracy reaches 98.54%. However, it is not validated using other performance 
metrics. Iram et al. propose a detection method using genetic algorithms, statistical inference, 
and reinforcement learning [16]. This approach applies genetic algorithms, which are widely 
used in the static analysis, to XSS attack detection, with statistical inference results used to 
determine the state of vulnerabilities present. It then uses reinforcement learning to adapt to 
unknown XSS attacks. Its accuracy, precision, recall and F1 values are 99.67%, 99.50%, 
99.56%, 99.52% respectively. Fang et al. propose a method called DeepXSS, which is based 
on circular decoding and LSTM model to extract XSS features for training [17]. Its precision, 
recall, and F1 values are 99.5%, 97.9%, and 98.7%, respectively. Again, these two articles do 
not mention FPR, FNR, and running time. Mohammed et al. propose a hybrid feature selection 
method based on IG and SBS and uses GBDT integrated learning technique for XSS detection, 
which can provide higher accuracy and detection rate [18]. In addition, a comparison is made 
with other methods for training time and testing time. The research provides a more 
comprehensive test of the proposed method with accuracy=99.59%, precision=99.50%, 
recall=99.02%, false-positive rate=0.20%, false-negative=0.98%, and AUC score= 99.41%.  

Client-side detection and server-side detection are not mutually exclusive; in practice, the 
two are typically used jointly in deployments. For client-server detection, Trevor et al. resist 
XSS attacks by embedding a policy in the web page [19]. The policy only supports the browser 
to run fixed scripts, while the others cannot be executed. This policy can be ideally enforced 
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by browsers that know when to run scripts. Wassermann et al. propose a method for detecting 
XSS vulnerabilities based on detecting input data [20]. The method defends against XSS 
attacks by detecting whether user input causes the browser's JavaScript engine to be invoked. 
Van Gundy et al. propose a method to distinguish unreliable content in Web pages by 
randomizing the HTML tags and attributes in each Web page, called Noncespaces [21]. 
Trusted content in Web pages can be easily distinguished by the client from unreliable content 
constructed by the attacker as long as the random mapping is not broken by the attacker.  

GCN may be used to solve the problems mentioned above. GCN is a generalized form of 
CNN that extends convolution to graphs while using several convolutional layers instead of 
circular iterations of the original GNN to achieve convergence of the whole graph. Thus, GCN 
is a deep neural network that can learn directly on graph data, enabling the extraction of 
information about the graph structure in addition to semantic features. GCN has an excellent 
performance in computer vision, natural language processing, program verification, and 
program reasoning [22]. In particular, in the field of NLP, GCN has an automatic clustering 
property, and the results of graph embedding using GCN can be automatically clustered in 
space without any training [23]. XSS attack detection is similar to text classification tasks in 
the field of NLP, and this property of GCN is useful. Moreover, on the basis of graph 
embedding using GCN, the expected results are obtained by training the GCN using labeled 
data.  

At present, GCN is divided into spectral-based GCN and spatial-based GCN. The basic 
principle of spectral-based GCN is to treat the graph as a signal for processing, and the 
convolution process is the process of noise removal for the signal using filters. At present, the 
more representative spectral-based GCN models are ChebNet [24], 1stChebNet [23], Spectral 
CNN [25] and so on. The idea of spatial-based GCN is based on information propagation over 
space. The more representative spatial-based GCN models are GraphSAGE [26], MPNN [27], 
PATCHY-SAN [28], DCNN [29], etc. Spatial-based GCN has received more attention from 
researchers compared to spectral-based GCN. The main reason is that spectral-based GCN 
requires a full graph Laplacian function, which becomes very difficult to handle for large 
graphs. In contrast, spatial-based GCN, based on the spatial spread of information, can process 
some nodes without processing the whole graph at once, which has higher efficiency, 
flexibility, and versatility.  

3. Methodology 
Receiving inspiration from GCN research results in the field of NLP [23, 30], this research 
proposes an XSS attack detection method based on GCN called GCNXSS. The proposed 
approach proceeds as follows. First, GCNXSS performs preprocessing on the data, including 
generalization and tokenization. A URL is divided into a set of words. Then, GCNXSS 
performs graph construction, which transforms a set of words into a word homogeneous graph 
based on word co-occurrence relationships. This part is divided into edge relation extraction, 
which extracts PMI from the preprocessed data as the edge weight of the graph, and word 
embedding, which obtains the node features (Word2Vec) of the graph through training. Finally, 
GCNXSS inputs the constructed graph into GCN for graph embedding and trains a classifier 
to distinguish XSS samples from benign samples. Fig. 1 shows the framework of the proposed 
method.  
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Fig. 1. The framework of the proposed method 

 

3.1 Preprocessing 

3.1.1 Generalization 
The confrontation between attackers and defenders has been going on for many years. 
Attackers try to bypass the defenses of security systems by encoding the code, inserting useless 
HTML tags and parameters into the payload, etc. In addition, domain information and numeric 
information in the payload is not helpful in detecting XSS attacks. As a result, the input data 
contains much redundant information. To reduce redundant information, this research uses the 
following measures to generalize the data: First, all characters in the input data are changed to 
lowercase. Then, the input data is decoded. Moreover, all the digits in the input data are 
replaced with '0'. Finally, all URLs in the input data are replaced with 'http://u'.  

3.1.2 Tokenization 
XSS payloads are constructed with certain rules, and the pre-processing phase requires 
segmenting its constituent elements, such as function names and tag names, for feature 
extraction. In order to tokenize the input data after generalization, the rules of the tokenization 
is shown below: 
 The context between ' and ", such as 'attack'.  
 URL, such as http and https.  
 Script label, such as <script>.  
 Start label, such as <h1.  
 Function name, such as topic=.  
 Function body, such as alert(.  
 Words make up of alphanumeric characters, such as user12.  
After this operation, each sample in the input data will be divided into a set of segments 

called words. Some examples are shown in Table 1.  
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Table 1. Some examples of preprocessing 

Origin URL Words 
site=message&msg=<script>alert(1)</script> site= message msg= <script> alert( 0 ) </script> 
q=%3Ciframe+src%3D%22http%3A%2F%2

Fxssed.com%22%3E q= <iframe src= http://u > 

Itemid=%22onmouseover=alert%28document
.cookie%29%20bad=%22 

itemid= onmouseover= alert( document.cookie ) 
bad= 

sid=&amp;ring=hentff98&amp;id=&amp;list sid= amp ring= hentff0 amp id= amp list 
usernum=3614006703 usernum= 0 

 

amp

  

ring=  hentff0 amp id= amp listsid=

onmouse
over= alert( document

.cookie ) bad=itemid=

For a sample after Tokenlization: “sid= amp ring= hentff0 amp id= amp list”

For a sample after Tokenlization:  “itemid= onmouseover= alert( document.cookie ) bad=”

window1

  

window2

 

window3

 

window4

 sliding    

 

window1

 

window2

 sliding  
Fig. 2. Some examples of sliding window 

 

3.2 Word Homogeneous Graph Construction 
Word homogeneous graph is a homogeneous graph with words as nodes after operations in 
Section 3.1.2. A sample, whether it is an XSS malicious sample or a benign sample, will be 
transformed into a word homogeneous graph, as shown in Fig. 1. The number of nodes in the 
word homogeneous graph is the number of words in a sample. The graphs use Word2Vec [31] 
as the feature of the nodes. This research also found using Word2Vec [31] achieves better 
results than using GloVe [32] in the preliminary experiments. Each word embedding vector 
corresponds to a node feature. Point-wise mutual information (PMI) is used to measure the 
semantic correlation before two word nodes in the graph. When the PMI value is less than or 
equal to 0, then there is no correlation between the corresponding two word nodes. When the 
PMI value is greater than 0, then the corresponding two word nodes possess correlation. The 
higher the correlation, the larger the value of PMI; the lower the correlation, the smaller the 
value of PMI. In this research, only edges are added between the two word nodes that possess 
correlation. In addition, PMI will be calculated by using a sliding window of fixed size, as 
shown in Fig. 2. The PMI is calculated as shown in the following equation.  

PMI(i, j) = log p(i,j)
p(i)p(j)

     (1) 

p(i, j) = #W(i,j)
#W

     (2) 

p(i) = #W(i)
#W

      (3) 
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where #W(i) is the number of sliding windows in the dataset that contain word i, #W(i,j) is 
the number of sliding windows that contains both words i and j, and #W is the total number of 
sliding windows in the dataset.  

3.3 GCN Layer 
For the word homogeneous graph, this research chooses 1stChebNet [23], the most 
representative model in spectral-based GCN, for graph classification. According to the result 
in the literature [23, 30, 33], the performance of a two-layer GCN is good enough as far as 
feature extraction is concerned. GCN with three, or even more, layers do not bring additional 
performance improvement. Therefore, a two-layer GCN is able to extract enough features from 
the constructed word isomorphism graph for downstream tasks. Moreover, python package 
DGL has encapsulated the graph convolution proposed in the literature [23], the simple two-
layer GCN is easily implemented. In addition, the input dimension is the word vector 
dimension, the hidden layer dimension is 20, and the output dimension is the same size as the 
label set (XSS, Non-XSS).  

3.4 Classifiers 
After the graph embedding is done from the graph data using GCN, the graph representation 
is fed to a classifier for the classification task. In this article, GCNXSS only uses a simple 
binary classifier as shown in Algorithm 1. If the detection results of the proposed method are 
better than existing methods in this case, then it is more indicative of the usability of GCN in 
the field of XSS attack detection. 
 

Algorithm 1: How to classify (hardmax) 
  Input: The array of features for every sample, features 
  Output: The array of labels for every feature, labels 
  labels is initialized to a null array ; 
  for item in features do  
        if item[0] > item[1] then  
            labels.add('Non-XSS'); 
        else 
            labels.add('XSS'); 
        end 
  end 
  return labels; 

4. Experiment 
This section introduces the datasets and metrics, and then conducts a series of experiments to 
answer the following research questions:  
 RQ 1. With the help of GCN and labeled data, does GCNXSS effectively detect XSS 

attacks and solve problems such as FNR and FPR? 
 RQ 2. Does GCNXSS outperform existing XSS attack detection methods? 

ALL experiments were operated on the PyCharm Community Edition 2021.1.1 x64 
platform. The computer used to run the program had 1 CPU of i5-10600KF with 4.10GHZ 
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and 16GB RAM. At the same time, we program in Python 3.6.13, Pytorch1.5.1, pandas 1.1.5, 
NumPy 1.19.2, and DGL 0.7.1 software environment. 

4.1 Datasets 
This research used 151,658 samples collected from the GitHub 
repository(https://github.com/duoergun0729/1book/tree/master/data), including 16,151 XSS 
malicious samples and 135,507 benign samples. The dataset is divided into training, validation, 
and testing datasets in the ratio of 6:2:2. Table 2 shows the detailed partitions of the datasets. 
In addition, this research merged the dataset on the Kaggle platform 
(https://www.kaggle.com/datasets/syedsaqlainhussain/cross-site-scripting-xss-dataset-for-
deep-learning) with the dataset used in the literature [34] to construct a difficult dataset 
containing 13,726 samples, with 6,312 benign samples and 7,414 malicious samples. The data 
for the malicious samples were obtained from OWASP, PortSwigger, and html5sec.org. The 
difficult dataset was used to perform generalization experiments. 
 

Table 2. Dataset subdivision 
Name Benign Malicious Total 

Training dataset 81,304 9,690 90,994 
Validation dataset 27,101 3,230 30,331 

Testing dataset 27,102 3,231 30,333 
Total dataset 135,507 16,151 151,658 

 
Table 3. Confusion matrix 

 Actual XSS Actual non-XSS 
Predicted XSS TP FP 

Predicted Non-XSS FN TN 
 

4.2 Evaluation Metrics 
In this research, the proposed method's performance is employed to analyze the methods using 
accuracy, precision, recall, F1-score, FNR, and FPR. The malicious sample was denoted as 
the positive (P) class, and the benign sample was denoted as the negative (N) class. These 
metrics are computed based on a confusion matrix (see Table 3), and they are defined as:  

accuracy = TP+TN
TP+FN+FP+TN

    (4) 

precision = TP
TP+FP

     (5) 

recall = TP
TP+FN

     (6) 

f1 − score = 2∗precison∗recall
precison+recall

    (7) 

FNR = FN
TP+FN

= 1 − recall    (8) 

FPR = FP
FP+TN

     (9) 

4.3 Experimental Results Analysis 
To verify whether GCN can extract features of XSS attacks, this research performs a 
preliminary experiment using randomly initialized GCN parameters based on fixed 
composition-related parameters. To enhance the convincing power, this research uses a real 
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dataset (https://github.com/das-lab/deep-xss) from the GitHub repository containing 64,833 
real samples in addition to experiments on the test dataset. After only one training, the results 
are very satisfactory, as shown in Table 4. It is easy to see that the accuracy of GCNXSS based 
on testing dataset is close to 0.98 after one training, and the accuracy of GCNXSS based on 
real dataset is close to 0.97. Moreover, all other metrics have good performance. This can 
deduce that GCN is able to aggregate XSS feature information.  
 

Table 4. Performance of the proposed method in the preliminary experiment after one training 
Dataset Accuracy Precision Recall F1-score FNR FPR 

Testing dataset 0.9827 0.9093 0.9307 0.9198 0.0693 0.0111 
Real dataset 0.9705 0.9674 0.9758 0.9716 0.0242 0.0350 

 
Moreover, this research also found using homogeneous graphs achieves a better embedding 

result than using heterogeneous graphs in the preliminary experiments. It is expected that the 
reason for this situation is that too many elements in the heterogeneous graphs make it more 
difficult for graph embedding based on GCN.  

To obtain better performance, the parameters of GCNXSS are optimized and trained. When 
the epoch is set to 50, the window size is set to 20, the word vector dimension is set to 300, 
the word embedding method is set to Word2Vec CBOW, the loss function is set to cross-
entropy, the optimizer is set to Adam, and the rest of the parameters by default, the 
performance results of GCNXSS are optimal, as shown in Table 5. From Table 5, GCNXSS 
has promising results with low FNR and FPR. Besides, the accuracy, precision, recall, and F1-
score of GCNXSS also improves. It is easy to see how the labeled data can help to overcome 
the problem of significant FNR and FPR on the basis of GCN.  
 

Table 5. Performance of the proposed method based on different datasets after training 

Dataset Accuracy Precision Recall F1-score FNR FPR Predicted 
Time (ms) 

Testing 
dataset 0.9997 0.9975 0.9997 0.9986 0.0003 0.0003 0.0461 

Real 
dataset 0.9931 0.9979 0.9886 0.9932 0.0114 0.0022 0.0489 

 
In addition, this research also tested the final model on the real dataset, as shown in Table 

5. The performance of GCNXSS on the real dataset is still good, and the reduction in the 
metrics is within acceptable limits compared to the performance on the testing dataset.  

Answer to RQ 1: The experimental results prove that GCNXSS has promising performance 
with low FNR and FPR. With the help of GCN and labeled data, GCNXSS can effectively 
detect XSS attacks.  

4.4 Comparison with Other Detectors 
To demonstrate the advancement of the methods proposed in this research, this research uses 
support vector machines (SVM), decision tree (DR), logistic regression (LR), k-nearest 
neighbor (KNN), random forest (RF), naive bayes, and adaptive boosting (Adaboost) which 
are machine learning methods compared with GCNXSS. The features used by these machine 
learning methods are those proposed in the literature [5]. These features are broadly classified 
into four categories: input length, sensitive characters, sensitive words, and redirected links. 
These are also the main difference between XSS payload and normal data.  
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Table 6. Comparison results with other machine learning detectors 

Detector Accuracy Precision Recall F1-score FNR FPR Predicted 
Time (ms) 

SVM 0.9942 0.9881 0.9573 0.9724 0.0427 0.0014 0.8467 
Decision Tree 0.9955 0.9951 0.9622 0.9784 0.0378 0.0006 0.0422 

Logistic 
Regression 0.9990 0.9928 0.9979 0.9954 0.0021 0.0009 0.0423 

KNN 0.9987 0.9957 0.9924 0.9940 0.0076 0.0005 0.6986 
Random 
Forest 0.9920 0.9936 0.9309 0.9612 0.0691 0.0007 0.0427 

Naive Bayes 0.9916 0.9279 0.9988 0.9620 0.0012 0.0092 0.0426 
Adaboost 0.9993 0.9969 0.9967 0.9968 0.0033 0.0004 0.0571 
GCNXSS 0.9997 0.9975 0.9997 0.9986 0.0003 0.0003 0.0461 

 
Table 7. Comparison results with previous detectors 

Detector Accuracy Precision Recall F1-score FNR FPR Predicted 
Time (ms) 

Fang et al., 
2018 [17] 0.9896 0.9966 0.9832 0.9898 0.0168 0.0036 0.2678 

Mokbal et al., 
2021 [18] 0.9966 0.9958 0.9725 0.9840 0.0275 0.0005 0.0532 

GCNXSS 0.9997 0.9975 0.9997 0.9986 0.0003 0.0003 0.0461 
 

The results of the comparison on the testing dataset are shown in Table 6. Traditional 
machine learning methods almost always have a high accuracy, precision, recall, and F1-score. 
At this point, GCNXSS only has a weak advantage. However, traditional machine learning 
methods is slightly deficient in FPR and FNR. In contrast, GCNXSS is more advantageous 
because its FPR and FNR are close to 0. And the predicted time is also in the top. In terms of 
performance metrics, GCNXSS is better compared to traditional machine learning methods.  

To further assess the advantages of the proposed GCNXSS, this research compared with the 
detectors proposed by the literature [17, 18] on the testing dataset. The literature [17] extracts 
the features of XSS payloads based on recurrent decoding and word2vec, and trains them using 
Long Short-Term Memory (LSTM) recurrent neural networks. The literature [18] proposes a 
hybrid feature selection method based on IG and SBS with GBDT integrated learning 
technique for XSS detection. The comparison results are shown in Table 7. As with traditional 
machine learning methods, these detectors are also slightly deficient in FPR and FNR, 
although they have high accuracy, precision, recall, and F1-score. From Table 7, it is can see 
that GCNXSS has a slight advantage over the previous detectors.  

To further demonstrate the advantages of the GCNXSS method, this research conducts 
generalization experiments on the difficult dataset. The detectors that appear in Table 6 and 
Table 7 use a model trained based on the testing dataset with all data from the difficult dataset 
as input. The results of the generalization experiments are shown in Table 8 and Table 9, 
which also be seen in Fig. 3 and Fig. 4. 
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Table 8. Results of generalization experiments with other machine learning detectors 
Detector Accuracy Precision Recall F1-score FNR FPR 

SVM 0.6356 0.5975 0.9909 0.7455 0.0091 0.7795 
Decision Tree 0.6590 0.6138 0.9898 0.7577 0.0102 0.7274 

Logistic 
Regression 0.5920 0.5698 0.9908 0.7235 0.0092 0.8738 

KNN 0.6414 0.6016 0.9900 0.7484 0.0100 0.7657 
Random Forest 0.5955 0.5720 0.9896 0.7250 0.0104 0.8647 

Naive Bayes 0.5503 0.5451 0.9984 0.7052 0.0016 0.9731 
Adaboost 0.6618 0.6158 0.9901 0.7593 0.0099 0.7215 
GCNXSS 0.8119 0.7583 0.9610 0.8477 0.0390 0.3665 

 
Table 9. Results of generalization experiments with previous detectors 

Detector Accuracy Precision Recall F1-score FNR FPR 
Fang et al., 
2018 [17] 0.6548 0.6138 0.9879 0.7572 0.0121 0.7436 

Mokbal et al., 
2021 [18] 0.5942 0.5715 0.9864 0.7237 0.0136 0.8639 

GCNXSS 0.8119 0.7583 0.9610 0.8477 0.0390 0.3665 
 

Fig. 3. Results of generalization experiments with other machine learning detectors 
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Fig. 4. Results of generalization experiments with previous detectors 
 

After the generalization experiments, it is easy to see that GCNXSS has significant 
advantages in all performance measures except for the recall and FNR, which do not differ 
much from other detectors. It can be concluded that GCNXSS has stronger generalization 
ability than other detectors and has a clear advantage in FPR. 

Answer to RQ 2: Traditional machine learning methods and previous detectors face poor 
generalization ability, significant FPR and FNR problems, although they have high accuracy, 
precision, recall, and F1-score. This research can conclude that GCNXSS has a stronger 
generalization ability with low FNR and FPR compared to the other methods.  

5. Discussion 
This research explores the application of GCN in XSS attack detection. Based on the 
experimental results, this research clarifies the conclusion that GCN can indeed be applied in 
the field of XSS attack detection. However, although the GCN is in the lead with other machine 
learning models in terms of predicted time, the time required for graph construction in the 
experiments is much greater than the time required for feature extraction. From this point on, 
optimizing composition methods is a subsequent priority in this area. In addition, most of the 
current XSS attack detection methods only perform well on the experimental datasets. Once 
the data source is changed, the performance of these methods will be greatly reduced. Using 
more advanced methods with better quality datasets may be able to help solve this problem. 
Besides, the advanced results obtained in this research using only GCN extraction results and 
annotation information, and the performance of the proposed method will be even better after 
using more complex classifiers and introducing attention mechanisms on top of this method. 
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6. Conclusion 
This research proposes an XSS attack detection method based on GCN called GCNXSS. First, 
GCNXSS performs a preprocessing operation for the data. Then, GCNXSS performs graph 
construction, which transforms a URL into a word homogeneous graph based on word co-
occurrence relationships. Finally, GCNXSS inputs the constructed graph into GCN for graph 
embedding and classification. In the experiments, this research first verifies the ability of GCN 
to extract the features of XSS attacks through preliminary experiments. Finally, the superiority 
of GCNXSS is demonstrated by comparing it with existing XSS attack detection methods. In 
the future, the research task is to explore more composition methods in the field of XSS attack 
detection. The direction of exploration is to construct graph structures that can contain more 
XSS payload features as a way to increase the generalization ability of detection methods and 
reduce detection time. In addition, because GCN shows good performance in the field of XSS 
attack detection, another research task is to apply GCN to more fields of Web attack detection, 
such as SQL injection detection, JavaScript malicious code detection, and so on. 
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