• Title/Summary/Keyword: Korean plant

Search Result 41,533, Processing Time 0.07 seconds

Study on the Protective Effect of Nelumbo nucifera GAERTN Extract on Cultured Cerebral Neuroglial Cells Damaged by Hexavalent Chromium (연꽃추출물이 6가 크롬으로 유도된 세포독성에 대한 보호효과에 관한 연구)

  • Seo, Young-Mi;Park, Yun-Jum;Choi, Yu-Sun
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.4
    • /
    • pp.242-245
    • /
    • 2009
  • In order to investigate the cytotoxic effect of hexavalent chromium ($Cr0_3$) and the protective effect of Nelumbo nucifera GAERTN (NNG) extract, cultured cerebral neuroglial cells (C6 glioma cells) were treated with $4{\sim}55{\mu}M$ concentrations of $Cr0_3$ for 48 hours. Cell viability was measured by XTT assay. The superoxide dismutase (SOD)-like activity for the antioxidant effect was also examined on the extract of NNG stamen. In this study, $Cr0_3$ significantly decreased cell viability dose-dependently. The cytotoxicities of $XTT_{90}$ and $XTT_{50}$ determined with $10{\mu}M$ and $55{\mu}M$ of $Cr0_3$, respectively, showed that the $Cr0_3$ had highly toxic effect on cultured C6 glioma cells by the cytotoxic criteria. In the protective effect of NNG extract, the cell viability was significantly increased by the treatment of NNG extract, and NNG extract increased SOD-like activity. From these results, it is suggested that $Cr0_3$ showed highly toxic effect on cultured C6 glioma cell s and NNG extract was very effective in the protection of $Cr0_3$-mediated cytotoxicity by antioxidative effect in these cultures.

Approaches on Optimum Conditions for Agrobacterium-Mediated Transformation of Phalaenopsis (호접란의 Agrobacterium 이용 형질전환 시스템의 최적조건 구명을 위한 연구)

  • Na, Ae Sil;Been, Chul Gu;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Sensitivities of PLBs of four Phalaenopsis cultivars, P. 'Taisuco Windian', P. 'Nancy Amour', P. 'Pink Twilight' and P. 'Taipei Gold' to kanamycin, spectinomycin and hygromycin at different concentrations (0, 25, 50, 100, 200, and $400mg{\cdot}L^{-1}$) were examined. Hygromycin was favorable for selecting the transformants in the genetic transformation of Phalaenopsis as PLBs of four cultivars were all dead at even $25mg{\cdot}L^{-1}$ hygromycin. Responses of PLBs of P. 'Maki Watanabe' and P. 'Brother Lawrence' to DL-phosphinothricin (PPT) were determined at different concentrations (0, 0.1. 0.25, 0.5, 1.0, 2.0, 2.5, and $5.0mg{\cdot}L^{-1}$) and $0.5mg{\cdot}L^{-1}$ PPT was thought to be suitable for selecting the transformants of Phalaenopsis. The optimum conditions for Agrobacterium cocultivation with Phalaenopsis PLBs were examined using a two-step cocultivation method in Dtps. 'City Girl' and A. tumefaciens LBA4404. In the first infection period in a 1 : 10 suspension of Agrobacterium to a VW medium, 1 hr infection showed the highest PLB survival ratio. And then, PLBs were cocultivated with a bacterial strain and a 3-day cocultivation period was better for Phalaenopsis PLBs than a prolonged period. Agrobacterium tumefaciens strains LBA4404 (pTOK233) and EHA105 (pGA643) were used to compare their efficiency on the genetic transformation of Phalaenopsis PLBs. The PLBs infected with EHA105 survived more than those infected with LBA4404 after two days in a dark condition and two weeks in light condition on a selective medium. About 1,000 PLBs for each of P. 'Maki Watanabe' and P. 'Brother Lawrence', and each bacterial strain of AGL1 (pCAMBIA3301) and LBA4404 (pTOK233) were used for the regeneration of transgenic plants. The bacterial strain AGL1 had a higher genetic transformation efficiency than LBA4404, with no significant difference between cultivars. In this study, 11 hygromycin-resistant plantlets and 32 PPT-resistant plantlets were produced, but these putative transgenic plantlets need further examinations.

Growth and Flowering of Campanula Species as Affected by Duration, Temperature, and Light Condition during Chilling Treatment (저온처리 기간, 온도 및 광 조건이 자생초롱꽃의 생육과 개화에 미치는 영향)

  • Lee, Young Mi;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • The experiment investigated effect of duration, temperature, and light condition during chilling treatment on growth and flowering of four Campanula species in a factorial experiment. Two parent species, Campanula punctata Lam. var. rubriflora Mak. and C. Punctata Lam., and their two $F_1$ hybrids, C. punctata Lam. ${\times}$ C. punctata Lam. var. rubriflora Mak. ('Jiknyeo') and C. punctata Lam. var. rubriflora Mak. ${\times}$ C. punctata Lam. ('Gyeonu'), were used. Plants were cultured in vitro for five weeks at $25^{\circ}C$ under about $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD before being chilled at 4 or $25^{\circ}C$ for 3, 6, or 9 weeks under a darkened or lighted (about $10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD) condition. After chilling treatment, plants were transplanted to 10 cm pots filled with a commercial growing medium and were transferred to environment-controlled growth chambers and subsequently to a greenhouse to observe their reproductive growth. Growth of all species and flowering of a $F_1$ hybrid 'Jiknyeo' were affected by duration, temperature, and light condition during chilling treatment. The greatest growth and survival percentage were observed in C. punctata Lam. var. rubriflora Mak. The survival percentage was greater when plants were chilled in a lighted than darkened condition, whereas it decreased when plants were chilled more than six weeks in vitro. Among the four species tested, flowering was observed only in a $F_1$ hybrid 'Jiknyeo' with 62.5% flowering plants when it was chilled at $25^{\circ}C$ for three weeks under a lighted condition. Percent flowering plant was affected by duration, temperature, and light condition during chilling treatment. Three-week chilling at $4^{\circ}C$ under a darkened condition significantly reduced days to flowering. These results suggest that the low temperature requirement for flowering is not qualitative but quantitative in Campanula species. Further experiment with more number of plants is necessary to ascertain this conclusion.

Humidification and Shading Affect Growth and Development of Cutting Propagated 'Maehyang' Strawberry (Fragaria × ananassa Duch.) at Propagation Stage (삽목번식 시 가습과 차광 처리에 따른 '매향' 딸기의 생육)

  • Kang, Dong Il;Jeong, Hai Kyoung;Park, Yoo Gyeong;Wei, Hao;Hu, Jiangtao;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.429-437
    • /
    • 2019
  • This study was conducted to examine the effect of humidification and shading during cutting propagation on growth and development of strawberry (Fragaria x ananassa Duch.) 'Maehyang' plants at a propagation stage. The runner cuttings were stuck on Nov. 23, 2017 in propagation benches set in a Venlo-type glasshouse. Four shading treatments, no shading (control, C), 55% shading with white lawn (W55), 55% black shading net (B55), or 100% black plastic film (B100) with either an intermittent fog system (H) or without fog system. The shading and fog systems were removed 2 weeks after sticking of strawberry cuttings. A nutrient solution for strawberry, which was developed by Yamazaki, was supplied once a day with electrical conductivity (EC) $1.6dS{\cdot}m^{-1}$ and pH 5.8. Growth parameters such as plant height, longest root, crown diameter, leaf chlorophyll, leaf area and fresh and dry weight were measured at 7 days and 26 days after sticking. There was no significant difference in growth of above-aerial part of strawberry. The overall growth of the strawberry roots was better grew by providing fog than that not provide fog. The root fresh weight and root dry weight after 26 days after sticking of strawberry cutting was the best in the treatment that provided fog system without shading (CH). The longest root after 26 days after sticking of strawberry cutting was the best in the treatments that provided fog system with either 55% white lawn (W55H) and 55% black shading net (B55H). These results suggest that morphogenesis of these plants were affected by humidification and shading types. In a broader perspective, these results can be used to optimize studies of other crops grown from cuttings.

Determination of Appropriate Location for Baby Leaf Vegetable in Multi Bench System of Rice Seedling Nursery Facility During High Temperature Periods (다단식 벼육묘시설을 활용한 고온기 어린잎채소 재배 적정 위치 선발)

  • Kim, Jae Kyung;Kim, Il Seop;Kang, Ho Min;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.286-292
    • /
    • 2019
  • This study aimed to investigate the suitable of layer on growth of six baby leaf vegetables using existing facilities and equipment in rice seedling nursery. Three kinds of Lactuca(lettuce 'Jinppallola' and 'Romain white', and indian lettuce), two of Brassica(tatsoi and red tatsoi) and amaranth were used as the materials. After sowing, the rice seedling tray was placed in multi bench system($L120{\times}W60{\times}H195cm$, 10th floor), which were low(1st) layer above 15cm, middle(4th) layer above 115cm and high(7th) layer above 175cm apart from ground. Irrigation was sprayed 2~3 times a day using a automatic irrigation system. The growth characteristics and leaf color were investigated when leaf vegetables were reached the optimum size(within 10cm of plant height). During the culture periods(29th Jun.~31th Jul. 2017), daytime average temperature was $27.4{\sim}28.3^{\circ}C$ regardless of layers but solar irradiance was higher in the high-layer than low and middle-layer of 37% and 22%, respectively. The leaf length, leaf width and number of leaves in middle and high-layer have a tendency to increase but, fresh weight was different according to the layer. When the correlation between accumulation radiation and growth was analyzed, all of growth factor of Amaranth showed a high correlation and other cultivars showed correlation with each growth factors. As a result, It is suitable that amaranth and red tatsoi for high-layer, Indian lettuce and tatsoi for middle and high-layer and 'Romain white' for middle-layer. The growth of red lettuce 'Jinppallola' was good at low layer, but leaf color expression was poor. So the high layer is suitable for 'Jinppallola'.

Analysis of the Effect of Fog Cooling during Daytime and Heat Pump Cooling at Night on Greenhouse Environment and Planst in Summer (하절기 주간 포그 냉방과 야간 히트펌프 냉방이 온실 환경 및 작물에 미치는 영향 분석)

  • Lee, Taeseok;Kim, Jingu;Park, Seokho;Lee, Choungkeun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.328-334
    • /
    • 2021
  • This study was conducted to analyze the effect of fog cooling during daytime and heatpump cooling at night in greenhouses in summer. During daytime, the average temp. and RH of the control greenhouse which had shading screen were 32.1℃ and 59.4%. and the average temp. and RH of the test greenhouse which had fog cooling were 30.0℃ and 74.3%. At this time, the average outside temp. and RH were 31.4℃ and 57.7%. So, the temp. of the control was 0.7℃ higher than outside temp., but the temp. of the test was 1.4℃ lower than outside and 2.1℃ lower than control. The average RH was 74.3% in the test and 59.4% in control. The average temp. and RH of the control greenhouse which had natural ventilation at night were 25.2℃ and 85.1%, and the average temp. and RH of the test greenhouse which had heat pump cooling were 23.4℃, 82.4%. The average outside temp. and RH at night were 24.4℃ and 88.2%. The temp. of the control was 0.8℃ higher than outside temp., but the temp. of the test was 1.0℃ lower than outside and 1.8℃ lower than control. The average RH was 82.4% in test and 85.1% in control greenhouse. There was no significant difference between the plants growth eight weeks after planting. But after the cooling treatment, the values of stem diameter, plant height, chlorophyll in test were higher than control. The total yield was 81.3kg in test, 73.8kg in control, so yield of test was 10.2% higher than control. As a result of economic analysis, 142,166 won in profits occurred in control greenhouse, but 28,727 won in losses occurred in test greenhouse, indicating that cooling treatment was less economical.

Growth and Quality of the Strawberry (Fragaria annanassa Dutch. cvs. 'Sulhyang') as affected by Complex Nutrient Solution Supplying Control System using Integrated Solar Irradiance and Substrate Moisture Contents in Hydroponics (수경재배 시 적산 일사량과 배지 수분 함량 복합 급액 제어에 의한 '설향' 딸기(Fragaria annanassa Dutch. cvs. 'Sulhyang')의 생육 및 품질)

  • Choi, Su Hyun;Kim, So Hui;Lee Choi, Gyeong;Jeong, Ho Jeong;Lim, Mi Young;Kim, Dae Young;Lee, Seon Yi
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2021
  • Strawberry cultivation in Korea is grown in greenhouse, but most farms manage their water supply using a timer control method based on the experience of growers. The timer control has problems in that it is difficult to consider the weather condition, the growth stage of crops, and the moisture content of the substrate, so that the crops cannot be managed at an optimal level, and the accuracy of cultivation management are lacking. The watering methods using integrated solar irradiance and substrate moisture contents are control systems that provide eco-friendly and precise water supply considering the growth conditions of crops. The purpose of this study was to compare the combined water supply control with integrated solar irradiance and substrate moisture contents and timer control method in hydroponic cultivation of strawberries using coir, and to set the optimal integrated solar irradiance level for complex water supply control. The irrigation system was automatically watered when it reached 100, 150, 250 J·cm-2 based on the external solar irradiance, and forced irrigation was performed at a substrate moisture content of less than 60% in all treatments. The amount of irrigation at once was 50 mL. The timer treatment was applied as a control. The smaller the level of integrated radiation to start watering, the greater the daily amount of irrigation. Both the fresh weight and dry weight per plant were higher in the complex irrigation control method than the timer control, and the 100 and 150 J·cm-2 treatment had the highest fresh weight, and the 100 J·cm-2 treatment showed a significantly higher dry weight. The yield was also significantly higher in the complex control method than in the timer, and the early yield increased as the level of integrated solar irradiance was smaller. The fresh weight of fruit was the lowest in the timer-controlled irrigation. As a result of this study, the possibility of combined control irrigation method using integrated solar irradiance and substrate moisture content was confirmed for precise water supply management of strawberries in hydroponics.

Effects of Foliar Application of CaCl2 on Ca Content and Occurrence and Alleviation of Blossom-end Rot of Paprika During High Temperature Season (고온기 CaCl2 엽면 살포가 파프리카 칼슘함량, 배꼽썩음과 발생과 경감에 미치는 영향)

  • Oh, Jeong Sim;Lee, Yong-Beom;Bae, Jong Hyang;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.263-270
    • /
    • 2021
  • This experiment was carried out to determine the effect of CaCl2 foliar spraying on the inhibition of blossom-end rot (BER) in hot summer paprika (Capsicum annum L. 'Special') cultivation. The effect of CaCl2 application was examined by the foliar application based on different fruit size, frequency, and spraying time. Also, it was investigated the occurrence and alleviation effect of BER symptom. Foliar application of CaCl2 (Ca 0.4%) was conducted by treating a fruit and leaf at 4 to 9 nodes above the crown flowers of each plant with 350 mL per week from June 3 to July 1. When the CaCl2 was sprayed at 7-day intervals for 4 weeks, the Ca content was the lowest in the fruit harvested with BER symptom in 11 to 20 mm of fruit width (FW). Four different regions in both BER symptom and normal fruits showed significant differences of Ca content, the highest was in pedicel, followed by stem-end, middle, and blossom-end. The Ca content increased sharply in normal paprika with 31-40 mm FW, in which Ca content was 78% higher than that of BER. Ca content in the middle and blossom-end of paprika over 21 mm in FW ranged 19.8% to 28.8% in normal fruits and 15.7% to 18.5% in BER, respectively. The incidence of BER increased rapidly by more than 60% in fruits with 31-40 mm FW. While there was no difference in fruit weight among the FW treatment, marketable yield rate was highest in the 21-30 mm FW, and the sugar content was high in the 11-30mm FW. When CaCl2 was applied three times for 7 days to a paprika having a 21- 30 mm FW, the cell wall-bound (CWB) Ca content was the highest and the rate of BER was lowest with 6.3%. After 10 days of CaCl2 foliar spray treatment, the CWB Ca content of paprika increased by 2.9 to 3.5 times compared to the control in all treatments. At 7 days after the CaCl2 foliar spraying once a day at varying spraying time, the leaf burn observed from 9:30 a.m. to 17:00 p.m. and the proline content increased as the spraying time was delayed. Therefore, the CaCl2 foliar spraying method for reducing of BER occurrence during paprika summer cultivation seems to be appropriate to spray 2-3 times at intervals of 3 days and before 8 a.m. at the time when the FW is 21-30 mm.

Effects of Night Temperature at Veraison on Berry Skin Coloration of 'Kyoho' Grapevines (포도 '거봉' 품종의 변색기 야간 온도 처리가 과피 착색에 미치는 영향)

  • Ryu, Suhyun;Cho, Jung-Gun;Jeong, Jae Hoon;Lee, Seul-Ki;Han, Jeom Hwa
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.295-303
    • /
    • 2021
  • We analyzed berry skin coloration, anthocyanin accumulation, and plant hormone contents in berry skins to determine the effect of night temperature at veraison on berry skin coloration in 'Kyoho' grapevines (Vitis labruscana L.). Vines were grown under 21, 24, and 27℃ at night for 20 days at veraison, from 40 to 60 days after full bloom (DAFB). Berry skin coloration of 'Kyoho' grapes was more suppressed in 27℃ treated vines, followed by that in 24℃ treated vines, than that in 21℃ treated vines. Cluster and berry weight and soluble solids content was lower in 24 and 27℃ treated vines than in 21℃ treated vines. Anthocyanin started to accumulate from 60 DAFB in berry skin of 21℃ treated vines, and malvidin and total anthocyanin content increased until 100 DAFB. The total and most of the individual anthocyanins decreased in 24 and 27℃ treated vines; however, peonidin did not decrease in 24℃ treated vines compared to that in 21℃ treated vines. Abscisic acid (ABA) peaked at veraison in berry skins of 21℃ treated vines and decreased thereafter until 100 DAFB. The increase in ABA content was inhibited in berry skins of 24 and 27℃ treated vines. Gibberellin (GA) content in berry skins decreased rapidly at veraison, with the decrease being slower under 27℃ than under 21℃. ABA/GA in berry skins of 21℃ treated vines peaked at 60 DAFB and decreased thereafter until 100 DAFB. However, ABA/GA decreased in berry skins of 24 and 27℃ treated vines, with reduced anthocyanin accumulation. Therefore, high night temperature (above 24℃) at veraison suppressed the berry skin coloration of 'Kyoho' grapes with changes in anthocyanin contents and composition due to the decrease in ABA/GA ratio and fruit soluble solids contents.

Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

  • Choi, Eun-Young;Jeong, Young-Ae;An, Seung-Hyun;Jang, Dong-Cheol;Kim, Dae-Hyun;Lee, Dong-Soo;Kwon, Jin-Kyung;Woo, Young-Hoe
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.401-409
    • /
    • 2021
  • This study aimed to estimate the photosynthetic capacity of tomato plants grown in a semi-closed greenhouse using temperature response models of plant photosynthesis by calculating the ribulose 1,5-bisphosphate carboxylase/oxygenase maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), thermal breakdown (high-temperature inhibition), and leaf respiration to predict the optimal conditions of the CO2-controlled greenhouse, for maximizing the photosynthetic rate. Gas exchange measurements for the A-Ci curve response to CO2 level with different light intensities {PAR (Photosynthetically Active Radiation) 200µmol·m-2·s-1 to 1500µmol·m-2·s-1} and leaf temperatures (20℃ to 35℃) were conducted with a portable infrared gas analyzer system. Arrhenius function, net CO2 assimilation (An), thermal breakdown, and daylight leaf respiration (Rd) were also calculated using the modeling equation. Estimated Jmax, An, Arrhenius function value, and thermal breakdown decreased in response to increased leaf temperature (> 30℃), and the optimum leaf temperature for the estimated Jmax was 30℃. The CO2 saturation point of the fifth leaf from the apical region was reached at 600ppm for 200 and 400µmol·m-2·s-1 of PAR, at 800ppm for 600 and 800µmol·m-2·s-1 of PAR, at 1000ppm for 1000µmol of PAR, and at 1500ppm for 1200 and 1500µmol·m-2·s-1 of PAR levels. The results suggest that the optimal conditions of CO2 concentration can be determined, using the photosynthetic model equation, to improve the photosynthetic rates of fruit vegetables grown in greenhouses.