Browse > Article
http://dx.doi.org/10.12791/KSBEC.2021.30.4.367

Growth and Quality of the Strawberry (Fragaria annanassa Dutch. cvs. 'Sulhyang') as affected by Complex Nutrient Solution Supplying Control System using Integrated Solar Irradiance and Substrate Moisture Contents in Hydroponics  

Choi, Su Hyun (Vegetable Research Division, National Institute of Horticultural and Herbal Science)
Kim, So Hui (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science)
Lee Choi, Gyeong (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science)
Jeong, Ho Jeong (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science)
Lim, Mi Young (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science)
Kim, Dae Young (Vegetable Research Division, National Institute of Horticultural and Herbal Science)
Lee, Seon Yi (Vegetable Research Division, National Institute of Horticultural and Herbal Science)
Publication Information
Journal of Bio-Environment Control / v.30, no.4, 2021 , pp. 367-376 More about this Journal
Abstract
Strawberry cultivation in Korea is grown in greenhouse, but most farms manage their water supply using a timer control method based on the experience of growers. The timer control has problems in that it is difficult to consider the weather condition, the growth stage of crops, and the moisture content of the substrate, so that the crops cannot be managed at an optimal level, and the accuracy of cultivation management are lacking. The watering methods using integrated solar irradiance and substrate moisture contents are control systems that provide eco-friendly and precise water supply considering the growth conditions of crops. The purpose of this study was to compare the combined water supply control with integrated solar irradiance and substrate moisture contents and timer control method in hydroponic cultivation of strawberries using coir, and to set the optimal integrated solar irradiance level for complex water supply control. The irrigation system was automatically watered when it reached 100, 150, 250 J·cm-2 based on the external solar irradiance, and forced irrigation was performed at a substrate moisture content of less than 60% in all treatments. The amount of irrigation at once was 50 mL. The timer treatment was applied as a control. The smaller the level of integrated radiation to start watering, the greater the daily amount of irrigation. Both the fresh weight and dry weight per plant were higher in the complex irrigation control method than the timer control, and the 100 and 150 J·cm-2 treatment had the highest fresh weight, and the 100 J·cm-2 treatment showed a significantly higher dry weight. The yield was also significantly higher in the complex control method than in the timer, and the early yield increased as the level of integrated solar irradiance was smaller. The fresh weight of fruit was the lowest in the timer-controlled irrigation. As a result of this study, the possibility of combined control irrigation method using integrated solar irradiance and substrate moisture content was confirmed for precise water supply management of strawberries in hydroponics.
Keywords
correlation analysis; FDR; irrigation; water use efficiency;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sim S.Y., and Y.S. Kim 2009a, Improvement of water and fertilizer use efficiency by daily last irrigation time for tomato perlite bag culture. J Bio-Env Con 18:408-412. (in Korean)
2 Park S.T., K.Y. Choi, and Y.B. Lee 2010, Water content characteristics of coconut coir substrates on different mixture ratios and irrigation rates and times. Kor J Hort Sci Technol 28:227-233. (in Korean)
3 RDA 2017, Standard manual of characteristics investigation for breeding new varieties of strawberries. RDA, Wanju, Korea, pp 4-29.
4 Choi E.Y., K.Y. Choi, and Y.B. Lee 2013, Scheduling non-drainage irrigation in coir substrate hydroponics with different percentages of chips and dust for tomato cultivation using a frequency domain reflectometry sensor. Protected Hort Plant Fac 22:248-255. doi:10.12791/ksbec.2013.22.3.248   DOI
5 Choi K.L. 2017, Characteristics of water and nutrient uptake in hydroponics and management of nutrient solution in tomato cultivation using coir substrate. PhD Dissertation, Gyeongsang Natl Univ., Jinju, Korea, pp 37-39. (in Korean)
6 Dorais M., A. Papadopoulos, and A. Gosselin 2001, Greenhouse tomato fruit quality. Hort Rev 26:239-319. doi:10.1002/9780470650806.ch5   DOI
7 Farina E., F.D. Battista, and M. Palagi 2007, Automation of irrigation in hydroponics by FDR sensors-Experimental results from field trials. Acta Hortic 747:193-196. doi:10.17660/ActaHortic.2007.747.21   DOI
8 Hayata Y., T. Tabe, S. Kondo, and K. Inoue 1998, The effects of water stress on the growth, sugar and nitrogen content of cherry tomato fruit. J Jpn Soc Hortic Sci 65:759-766. (in Japanese) doi:10.2503/jjshs.67.759   DOI
9 Kim H.J. and Y.S. Kim 2000, Effect of irrigation control by time and integrated solar radiation on muskmelon quality in perlite culture. J Bio-Env Con 9:66-72. (in Korean)
10 Yoo S.H., Park, M.E., Han, G.H. and B.S. Bae 1999, Monitoring of water content and electrical conductivity in paddy soil profile by time domain reflectometry. Kor J Soil Sci Fertil 32:365-374.
11 Veldkamp E., and J.J. O'Brien 2000, Calibration of a frequency domain reflectometry sensor for humide tropical soils of volcanic origin. Soil Sci Soc Am J 64:1549-1553. doi:10.2136/sssaj2000.6451549x   DOI
12 Rhee H.C., T.C. Seo, G.L. Choi, M.Y. Roh, and M.W. Cho 2010, Effect of air humidity and water content of medium on the growth and physiological disorder of paprika in summer hydroponics. J Bio-Env Con 19:305-310. (in Korean)
13 RDA 2018, Smart greenhouse guideline. RDA, Haman, Korea, pp 68-73.
14 RDA 2019, Manual for strawberry cultivation. RDA, Wanju, Korea, pp 144.
15 Rhee H.C., G.L. Choi, J.W. Jeong, M.H. Cho, K.H. Yeo, D.M. Kim, C.G. An, and D.Y. Lee 2013, Effect of soil water potential on the fruit quality and yield in fertigation cultivation of paprika in summer. Protected Hort Plant Fac 22:378-384. (in Korean) doi:10.12791/ksbec.2013.22.4.378   DOI
16 Sim S.Y., and Y.S. Kim 2009b, Management of dripper position in tomato perlite bag culture. J Bio-Env Con 18:413-419. (in Korean)
17 Starr J.L., and I.C. Paltineanu 1998, Soil water dynamics using multisensor capacitance probes in nontraffic interrows of corn. Soil Sci Soc Am J 62:114-122. doi:10.2136/sssaj1998.03615995006200010015x   DOI
18 Topp G.C., Davis, J.L. and A.P. Annan 1980, Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour Res 16:574-582. doi:10.1029/WR016i003p00574   DOI
19 Roh M.Y., and Y.B. Lee 1997, Predictive control of concentration of nutrient solution according to integrated solar radiation during one hour in the morning. Acta Hortic 440:256-261. doi:10.17660/ActaHortic.1996.440.45   DOI
20 Kim H.J., S.W. Ahn, K.H. Han, J.Y. Choi, S.O. Chung, M.Y. Roh, and S.O. Hur 2013, Comparison study of water tension and content characteristics in differently textured soils under automatic drip irrigation. Protected Hort Plant Fac 22:341-348. (in Korean) doi:10.12791/ksbec.2013.22.4.341   DOI
21 Na T.S., J.G. Kim, K.J. Choi, G.Y. Gi, and Y.K. Yoo 2008, Study on optimum water supply by solar radiation in cut rose(Rosa hybrida cv Cardnal). J Bio-Env Con 17:215-220. (in Korean)
22 KOSTAT 2021, Agricultural area survey. Available via https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0017&conn_path=I2 Accessed 28 June 2021
23 KTSPI 2021, Trade statistics service. Available via https://www.bandtrass.or.kr/customs/total.do?command=CUS001View&viewCode=CUS00201
24 Ledieu J., Ridder, P.D., Clerck, P.D. and S. Dautrebande 1986, A method of measuring soil moisture by time-domain reflectometry. J Hydrol 88:319-328. doi:10.1016/0022-1694(86)90097-1   DOI
25 Park S.T., G.H. Jung, H.J. Yoo, E.Y. Choi, K.Y. Choi, and Y.B. Lee 2014, Measuring water content characteristics by using frequency domain reflectometry sensor in coconut coir substrate. Protected Hort Plant Fac 23:158-166. (in Korean) doi:10.12791/KSBEC.2014.23.2.158   DOI
26 Lee S.Y. and Y.C. Kim 2019, Water treatment for closed hydroponic systems. J Korean Soc Environ Eng 41:501-513. (in Korean) doi:10.4491/KSEE.2019.41.9.501   DOI
27 Choi K.Y., E.Y. Choi, I.S. Kim, and Y.B. Lee 2016, Improving water and fertilizer use efficiency during the production of strawberry in coir substrate hydroponics using a FDR sensor-automated irrigation system. Hortic Environ Biotechnol 57:431-439. doi:10.1007/s13580-016-0072-2   DOI
28 Lim M.Y., S.H. Choi, G.L. Choi, S.H. Kim, and H.J. Jeong 2021, Effects of irrigation amount on fruiting period and EC level by growth period on growth and quality of melon (Cucumis melo L.) using coir substrate hydroponics during autumn cultivation. Hortic Sci Technol 39:446-455. doi:10.7235/HORT.20210040   DOI
29 MAFRA 2021, Agricultural production index. Available via https://mafra.go.kr/bbs/mafra/131/327493/artclView Accessed 7 July 2021