• Title/Summary/Keyword: Korean mathematics books

Search Result 108, Processing Time 0.025 seconds

A Study on Marking the Carrying Number of Multiplication Algorithm with regrouping (올림이 있는 자연수 곱셈 알고리즘의 올림하는 수 표기에 관한 고찰)

  • Choi, Kyoung A;Lee, Jeong Eun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.1
    • /
    • pp.195-214
    • /
    • 2017
  • The standardized algorithm of natural number multiplication simplify the procedure of arithmetic. In the case of multiplication algorithm with regrouping, we write small the carrying number on the multiplicand. But, teachers and students have to make their own way about the case of two digits multipliers, because Korean elementary mathematics textbooks just deal with the case of the one digit multipliers. In this study, we investigated Korean current elementary mathematics textbooks related to multiplication algorithm with regrouping, and analyzed the result of research on the real condition about marking the carrying number. Besides, we reviewed the guidance contents of algorithm of natural number multiplication in Finland's math textbook and literature. By conclusions, we suggest several implications as followed; First, we need some examples of the way to mark the carrying number in teacher's guidance books and textbooks. Second, teachers try for students to feel the good points of the systematic ways to mark the carrying number. Third, teachers understand algorithm of natural number multiplication and the alternative ways about marking the carrying number.

  • PDF

Mathematics and Society in Koryo and Chosun (고려.조선시대의 수학과 사회)

  • Joung Ji-Ho
    • The Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.48-73
    • /
    • 1986
  • Though the tradition of Korean mathematics since the ancient time up to the 'Enlightenment Period' in the late 19th century had been under the influence of the Chinese mathematics, it strove to develop its own independent of Chinese. However, the fact that it couldn't succeed to form the independent Korean mathematics in spite of many chances under the reign of Kings Sejong, Youngjo, and Joungjo was mainly due to the use of Chinese characters by Koreans. Han-gul (Korean characters) invented by King Sejong had not been used widely as it was called and despised Un-mun and Koreans still used Chinese characters as the only 'true letters' (Jin-suh). The correlation between characters and culture was such that, if Koreans used Han-gul as their official letters, we may have different picture of Korean mathematics. It is quite interesting to note that the mathematics in the 'Enlightenment Period' changed rather smoothly into the Western mathematics at the time when Han-gul was used officially with Chinese characters. In Koryo, the mathematics existed only as a part of the Confucian refinement, not as the object of sincere study. The mathematics in Koryo inherited that of the Unified Shilla without any remarkable development of its own, and the mathematicians were the Inner Officials isolated from the outside world who maintained their positions as specialists amid the turbulence of political changes. They formed a kind of Guild, their posts becoming patrimony. The mathematics in Koryo significant in that they paved the way for that of Chosun through a few books of mathematics such as 'Sanhak-Kyemong', 'Yanghwi-Sanpup' and 'Sangmyung-Sanpup'. King Sejong was quite phenomenal in his policy of promotion of mathematics. King himself was deeply interested in the study, createing an atmosphere in which all the high ranking officials and scholars highly valued mathematics. The sudden development of mathematic culture was mainly due to the personality and capacity of king who took anyone with the mathematic talent into government service regardless of his birth and against the strong opposition of the conservative officials. However, King's view of mathematics never resulted in the true development of mathematics perse and he used it only as an official technique in the tradition way. Korean mathematics in King Sejong's reign was based upon both the natural philosophy in China and the unique geo-political reality of Korean peninsula. The reason why the mathematic culture failed to develop continually against those social background was that the mathematicians were not allowed to play the vital role in that culture, they being only the instrument for the personality or politics of the king. While the learned scholar class sometimes played the important role for the development of the mathematic culture, they often as not became an adamant barrier to it. As the society in Chosun needed the function of mathematics acutely, the mathematicians formed the settled class called Jung-in (Middle-Man). Jung-in was a unique class in Chosun and we can't find its equivalent in China or Japan. These Jung-in mathematician officials lacked tendency to publish their study, since their society was strictly exclusive and their knowledge was very limited. Though they were relatively low class, these mathematicians played very important role in Chosun society. In 'Sil-Hak (the Practical Learning) period' which began in the late 16th century, especially in the reigns of Kings Youngjo and Jungjo, which was called the Renaissance of Chosun, the ambitious policy for the development of science and technology called for. the rapid increase of he number of such technocrats as mathematics, astronomy and medicine. Amid these social changes, the Jung-in mathematicians inevitably became quite ambitious and proud. They tried to explore deeply into mathematics perse beyond the narrow limit of knowledge required for their office. Thus, in this period the mathematics developed rapidly, undergoing very important changes. The characteristic features of the mathematics in this period were: Jung-in mathematicians' active study an publication, the mathematic studies by the renowned scholars of Sil-Hak, joint works by these two classes, their approach to the Western mathematics and their effort to develop Korean mathematics. Toward the 'Enlightenment Period' in the late 19th century, the Western mathematics experienced great difficulty to take its roots in the Peninsula which had been under the strong influence of Confucian ideology and traditional Korean mathematic system. However, with King Kojong's ordinance in 1895, the traditional Korean mathematics influenced by Chinese disappeared from the history of Korean mathematics, as the school system was hanged into the Western style and the Western mathematics was adopted as the only mathematics to be taught at the Schools of various levels. Thus the 'Enlightenment Period' is the period in which Korean mathematics shifted from Chinese into European.

  • PDF

A study on An abridged version of the Joseon Mathematics (Su-Hak-Jeol-Yo), a mathematics book written by Jong-Hwa AN (안종화(安鍾和)의 <수학절요(數學節要)>에 대한 고찰)

  • Lee, Sang-Gu;Lee, Jae-Hwa;Byun, Hyung-Woo
    • Communications of Mathematical Education
    • /
    • v.25 no.4
    • /
    • pp.641-651
    • /
    • 2011
  • In 2007, a Taiwanese mathematics historian Wann-Sheng HORNG made a visit to Kyujanggak(the royal library of Joseon Dynasty) in Seoul, Korea. During this visit, he found the Korean math book An abridged version of the Joseon Mathematics (<數學節要>, Su-Hak-Jeol-Yo), which was written by Jong-Hwa AN(9 Nov 1860 - 24 Nov 1924) in 1882. Then he mentioned the possible importance of AN's book in his article in the Journal Kyujanggak(vol. 32, June 2008). Jong-Hwa AN is a Korean scholar, activist of patriotism and enlightenment in the latter era of Joseon Dynasty. He passed the last examination of Joseon Dynasty to become a high government officer in 1894. The father of the modern mathematics education in Korea, Sang-Seol LEE(1870-1917) also passed the same examination with him. It is interesting that government high officer AN and LEE both wrote mathematics books in 19th century. In this talk, we now analyze this mathematics book of Joseon written in 1882.

A Study on understanding of infinite decimal (무한소수에 대한 학생들의 이해)

  • Park, Dal-Won
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.2
    • /
    • pp.237-246
    • /
    • 2007
  • According to 7-th curriculum, irrational number should be introduced using non-repeating infinite decimals. A rational number is defined by a number determined by the ratio of some integer p to some non-zero integer q in 7-th grade. In 8-th grade, A number is rational number if and only if it can be expressed as finite decimal or repeating decimal. A irrational number is defined by non-repeating infinite decimal in 9-th grade. There are misconceptions about a non-repeating infinite decimal. Although 1.4532954$\cdots$ is neither a rational number nor a irrational number, many high school students determine 1.4532954$\cdots$ is a irrational number and 0.101001001$\cdots$ is a rational number. The cause of misconceptions is the definition of a irrational number defined by non-repeating infinite decimals. It is a cause of misconception about a irrational number that a irrational number is defined by a non-repeating infinite decimals and the method of using symbol dots in infinite decimal is not defined in text books.

  • PDF

A Study on Teaching Methods of Geometry Based on Individual Differences in Middle School (개인차를 고려한 중학교 기하 교수-학습 방법 개발)

  • Kwon, Young-In;Suh, Bo-Euk
    • The Mathematical Education
    • /
    • v.47 no.2
    • /
    • pp.113-133
    • /
    • 2008
  • This study is to develop the methods of specifying teaching that can consider individual differences in middle school geometry education. The purpose of this study is to decide the variations causing individual differences and to find the proper learning methods considering the variations. Through literature review, this study made it clear that the matter of individual difference is just the matter of talent and examined what factors make up mathematical talents. On the basis of the result, five important variations and fourteen subordinate factors were determined. I researched into the learning methods that consider the determined subordinate factors using the 'congruence' unit of middle school textbooks and developed specific learning methods for each of the subordinate factors through specific congruence problem solving situations. This study can be summarized as follows : I researched the studies of mathematical ability conducted by several educators and psychologists. This research is divided into the early study and the developed study of mathematical ability. Through this study five specific variations were determined. And fourteen subordinate factors have been made from the determined variations. The specific learning methods based on individual differences was developed according to the fourteen subordinate factors on the basis of middle school textbooks of Korea, Gusev's textbook, problem books of Russia, and etc.

  • PDF

The Origin of Newton's Generalized Binomial Theorem (뉴턴의 일반화된 이항정리의 기원)

  • Koh, Youngmee;Ree, Sangwook
    • Journal for History of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.127-138
    • /
    • 2014
  • In this paper we investigate how Newton discovered the generalized binomial theorem. Newton's binomial theorem, or binomial series can be found in Calculus text books as a special case of Taylor series. It can also be understood as a formal power series which was first conceived by Euler if convergence does not matter much. Discovered before Taylor or Euler, Newton's binomial theorem must have a good explanation of its birth and validity. Newton learned the interpolation method from Wallis' famous book ${\ll}$Arithmetica Infinitorum${\gg}$ and employed it to get the theorem. The interpolation method, which Wallis devised to find the areas under a family of curves, was by nature arithmetrical but not geometrical. Newton himself used the method as a way of finding areas under curves. He noticed certain patterns hidden in the integer binomial sequence appeared in relation with curves and then applied them to rationals, finally obtained the generalized binomial sequence and the generalized binomial theorem.

Revisiting Logic and Intuition in Teaching Geometry: Comparing Euclid's Elements and Clairaut's Elements (Euclid 원론과 Clairaut 원론의 비교를 통한 기하 교육에서 논리와 직관의 고찰)

  • Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.34 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • Logic and intuition are considered as the opposite extremes of teaching geometry, and any teaching method of geometry is to be placed between these extremes. The purpose of this study is to identify the characteristics of logical and intuitive approaches for teaching geometry and to derive didactical implications by taking Euclid's Elements and Clairaut's Elements respectively representing the extremes. To this end, comparing the composition and contents of each book, we analyze which propositions Clairaut chose from Euclid's Elements, how their approaches differ in definitions, proofs, and geometrical constructions, and what unique approaches Clairaut took. The results reveal that Clairaut mainly chose propositions from Euclid's books 1, 3, 6, 11, and 12 to provide the contexts that show why such ideas were needed, rather than the sudden appearance of abstract and formal propositions, and omitted or modified the process of justification according to learners' levels. These propose a variety of intuitive strategies in line with trends of teaching geometry towards emphasis on conceptual understanding and different levels of justification. Specifically, such as the general principle of similarity and the infinite geometric approach shown in Clairaut's Elements, we could confirm that intuition-based geometry does not necessarily aim for tasks with low cognitive demand, but must be taught in a way that learners can understand.

ON EULERIAN q-INTEGRALS FOR SINGLE AND MULTIPLE q-HYPERGEOMETRIC SERIES

  • Ernst, Thomas
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.179-196
    • /
    • 2018
  • In this paper we extend the two q-additions with powers in the umbrae, define a q-multinomial-coefficient, which implies a vector version of the q-binomial theorem, and an arbitrary complex power of a JHC power series is shown to be equivalent to a special case of the first q-Lauricella function. We then present several q-analogues of hypergeometric integral formulas from the two books by Exton and the paper by Choi and Rathie. We also find multiple q-analogues of hypergeometric integral formulas from the recent paper by Kim. Finally, we prove several multiple q-hypergeometric integral formulas emanating from a paper by Koschmieder, which are special cases of more general formulas by Exton.

Analysis on Triangle Determination and Congruence (삼각형의 결정과 합동의 분석)

  • Kim, Su-Hyun;Choi, Yoon-Sang
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.3
    • /
    • pp.341-351
    • /
    • 2007
  • The primary purpose of this treatise is to suggest the solutions as follows for the errors concerning the triangle determination and congruence in every Korean mathematics textbook for 7th graders: showing that SsA, along with SSS, SAS, ASA, should also be included as the condition for triangle determination, congruence and similarity; proving that contrary to what has been believed, minimality applies only to congruence and similarity but not to determination; examining related Euclidean propositions; discussing the confusion about the characteristics of determination and congruence; and considering the negative effects of giving definite figures in construction education. The secondary purpose is to analyze the significance of triangle determinant that is not dealt with in either Euclid's Elements or the text books in the U.S. or Japan, and suggest a way to effectively deal with triangle determination and congruence in education.

  • PDF

Analysis on Opportunity-to-learn context-based tasks provided by 'Probability and Statistics' textbooks ('확률과 통계' 교과서에 제시된 맥락 기반 과제의 학습기회 분석)

  • Choi, Heesun
    • Journal of the Korean School Mathematics Society
    • /
    • v.22 no.3
    • /
    • pp.241-256
    • /
    • 2019
  • In this paper, we analyzed the types of tasks presented in the 'Probability and Statistics' textbooks and how the cognitive competences required to perform the tasks provide students with opportunity-to-learn. To this end, the analysis of the 9 books of the 'Probability and Statistics' test textbooks according to the 2015 revised mathematics curriculum showed that the context-based tasks(CF type, RE type) ranged from 67.5% to 78.0% of the total number of tasks in each textbook, but the ratio of relevant and essential tasks related to real life is from 0.4% to 2.0%, it was found that most of the context-based tasks presented in the textbooks were disguised as real life materials. The cognitive competences of context-based tasks ranged from 29.6% to 50.0% in reproduction category, from 33.8% to 54.3% in connection category, and from 8.8% to 20.0% in reflection category. As a result, there was not enough opportunity-to-learn for students to experience reflective cognitive processes.