• Title/Summary/Keyword: Korean indigenous probiotics

Search Result 10, Processing Time 0.021 seconds

Bioconversion of Rutin in Tartary Buckwheat by the Korean Indigenous Probiotics (한국형 프로바이오틱스에 의한 쓴메밀 내 rutin의 생물전환)

  • Chang Kwon;Jong Won Kim;Young Kwang Park;Seungbeom Kang;Myung Jun Chung;Su Jeong Kim;Sanghyun Lim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.83-92
    • /
    • 2023
  • In this study, bioconversion of rutin to quercetin was confirmed by the fermentation of Korean indigenous probiotics and tartary buckwheat. Based on whole genome sequencing of 17 probiotics species, α-rhamnosidase, related to bioconversion of isoquercetin (quercetin 3-β-D glucoside) from rutin, is identified in the genome of CBT BG7, LC5, LR5, LP3, LA1, and LGA1. β-Glucosidase, related to bioconversion of isoquercetin to quercetin, is identified in the genome of all 17 species. Among the 17 probiotics species, 6 probiotics including CBT BG7, LR5, LP3, LA1, LGA1 and ST3 performed the bioconversion of rutin to quercetin up to 21.5 ± 0.3% at 7 days after fermentation. The fermentation of each probiotics together with enzyme complex Cellulase KN® was conducted to reduce the time of bioconversion. As a result, CBT LA1 which showed the highest yield of bioconversion of 21.5 ± 0.3% when the enzyme complex was not added showed high bioconversion yield of 84.6 ± 0.5% with adding the enzyme complex at 1 day after fermentation. In particular, CBT ST3 (96.2 ± 0.4%), SL6 (90.1 ± 1.4%) and LP3 (90.0 ± 0.4%) showed high yield of bioconversion more than 90%. In addition, such probiotics including high levels in quercetin indicated the inhibitory effects of NO production in LPS-induced RAW264.7 cells. In this study, we confirmed that the fermentation of Korean indigenous probiotics and enzyme complex together with roasted tartary buckwheat increased the content of quercetin and reduced the time of bioconversion of rutin to quercetin which is a bioactive compound related to anti-inflammatory, antioxidants, anti-obesity, and anti-diabetes.

Bioconversion of Ginsenosides by Bifidobacterium CBT BG7, BR3 and BL3 (비피도박테리움 CBT BG7, BR3, BL3의 진세노사이드 전환능)

  • Jiwon Choi;Chang Kwon;Jong Won Kim;Myung Jun Chung;Jong Hyun Yoon;Sanghyun Lim
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.395-403
    • /
    • 2022
  • In this study, we identified that the fermentation of Korean indigenous probiotics and red ginseng produced ginsenoside compound K (CK) from major ginsenosides. Based on whole genome sequencing of 19 probiotics species, β-glucosidase, α-arabinofuranosidase, β-xylosidase, and α-rhamnosidase related to bioconversion of ginsenosides are identified in the genome of 19 species, 3 species, 6 species, and 8 species, respectively. Among the 19 probiotics species, Bifidobacterium longum CBT BG7 converted from ginsenoside Rb1 to CK, and both B. breve CBT BR3 and B. lactis CBT BL3 converted ginsenoside Rb1 to Rd. The final concentration and yield of ginsenoside F2 and CK were higher in the fermentation with the nondisrupted cells than with disrupted cells. The combination of both CBT BG7 and BL3, and CBT BG7 and BR3 showed higher amounts of F2 than CBT BG7 only. CBT BG7 with adding α-amylase increased the amounts of F2. In this study, we identified that the fermentation of both Korean indigenous probiotic bacteria CBT BG7, BR3 and BL3, and red gingseng is able to produce CK, a bioactive compound that promotes health benefits.

Potentials of Synbiotics for Pediatric Nutrition and Baby Food Applications: A Review (소아 영양 및 유아식 응용을 위한 신바이오틱스의 잠재력: 총설)

  • Jung, Hoo Kil;Kim, Sun Jin;Seok, Min Jeong;Cha, Hyun Ah;Yoon, Seul Ki;Lee, Nah Hyun;Kang, Kyung Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • Probiotic, prebiotic, and synbiotic substances as well as microorganisms were added to infant formula in an attempt to influence the intestinal microflora with an aim to stimulate the growth of lactic acid bacteria, especially bifidobacteria and lactobacilli. Over the last 10 years, new synbiotic infant formulas containing probiotics and prebiotics have been proposed in order to simulate the effect of breast-feeding on the intestinal microflora. Owing to their synergistic effect, the new synbiotics are expected to be more helpful than using probiotics and prebiotics individually. Maintenance of the viability of the probiotics during food processing and the passage through the gastrointestinal tract should be the most important consideration, since a sufficient number of bacteria ($10^8cfu/g$) should reach the intended location to have a positive effect on the host. Storage conditions and the processing technology used for the manufacture of products such as infant formula adversely affect the viability of the probiotics. When an appropriate and cost-effective microencapsulation methodology using the generally recognized as safe (GRAS) status and substances with high biological value are developed, the quality of infant formulas would improve. The effect of probiotics may be called a double-effect, where one is an immunomodulatory effect, induced by live probiotics that advantageously alter the gastrointestinal microflora, and the other comprises anti-inflammatory responses elicited by dead cells. At present, a new terminology is required to define the dead microorganisms or crude microbial fractions that positively affect health. The term "paraprobiotics" (or ghost probiotics) has been proposed to define dead microbial cells (not damaged or broken) or crude cell extracts (i.e., cell extracts with complex chemical composition) that are beneficial to humans and animals when a sufficient amount is orally or topically administered. The fecal microflora of bottle-fed infants is altered when the milk-based infant formula is supplemented with probiotics or prebiotics. Thus, by increasing the proportion of beneficial bacteria such as bifidobacteria and lactobacilli, prebiotics modify the fecal microbial composition and accordingly regulate the activity of the immune system. Therefore, considerable attention has been focused on the improvement of infant formula quality such that its beneficial effects are comparable to those of human milk, using prebiotics such as inulin and oligosaccharides and potential specific probiotics such as bifidobacteria, which selectively stimulate the proliferation of beneficial bacteria in the microflora and the indigenous intestinal metabolic activity of the microflora.

  • PDF

Metabolism of Ginsenosides to Bioactive Compounds by Intestinal Microflora and Its Industrial Application

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.165-176
    • /
    • 2009
  • Korean ginseng, which contains ginsenosides and polysaccharides as its main constituents, is orally administered to humans. Ginsenosides and polysaccharides are not easily absorbed by the body through the intestines due to their hydrophilicity. Therefore, these constituents which include ginsenosides Rb1, Rb2, and Rc, inevitably come into contact with intestinal microflora in the alimentary tract and can be metabolized by intestinal microflora. Since most of the metabolites such as compound K and protopanaxatriol are nonpolar compared to the parental components, these metabolites are easily absorbed from the gastrointestinal tract. The absorbed metabolites may express pharmacological actions, such as antitumor, antidiabetic, anti-inflammatory, anti-allergic, and neuroprotective effects. However, the activities that metabolize these constituents to bioactive compounds differ significantly between individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. Recently, ginseng has been fermented with enzymes or microbes to develop ginsengs that contain these metabolites. However, before using these enzymes and probiotics, their safety and biotransforming activity should be assessed. Intestinal microflora play an important role in the pharmacological action of orally administered ginseng.

Comparison of Bioconversion Ability and Biological Activities of Single and Multi-Strain Probiotics for an Active Molecule in Roasted Tartary Buckwheat (단일 및 복합 프로바이오틱스 균주에 의한 쓴메밀 내 Rutin의 Quercetin으로의 생물전환 및 이의 생리활성 비교)

  • Song-in Kim;Eunbee Cho;Kyohee Cho;Chang Kwon;Seok-hee Lim;Jong Won Kim;Myung Jun Chung;Su Jeong Kim;Sanghyun Lim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.465-473
    • /
    • 2023
  • In this study, we aimed to evaluate the bioconversion ability of single (Lactiplantibacillus plantarum CBT LP3, Lactococcus lactis subsp. lactis CBT SL6, Streptococcus thermophilus CBT ST3) and multi-strain probiotics to convert rutin to quercetin in roasted tartary buckwheat, and to assess their biological activities. To evaluate the bioconversion efficiency, each strain was cultured for 24 h in MRS media with 5% roasted tartary buckwheat 'Hwangguem-Miso' powder. After then, rutin and quercetin contents were determined by HPLC. Additionally, the biological activities were compared before and after bioconversion of an ingredient. Anti-oxidant effects were measured by DPPH and ABTS assays. Anti-inflammatory effects were determined by measuring NO production, and levels of iNOS, TNF-α, IL-6 and IL-4 using an LPS-induced Raw 264.7 cell model. The bioconversion rate under the combination of three species of probiotics significantly increased more than single species. Antioxidant efficacy results showed the highest activity when the combination of three species of probiotics cultured. The pro-inflammatory factors such as nitric oxide, iNOS, TNF-a, and IL-6 were significantly decreased when the three types of probiotics were combined than single strain was cultured. In addition, level in the anti-inflammatory factor IL-4 was increased. The multi-strain probiotics showed increased bioconversion efficiency, effects of anti-oxidant and anti-inflammatory compared to the single strain. These findings suggest that the fermentation of tartary buckwheat by probiotics may be a valuable candidate for developing functional foods with anti-oxidation and anti-inflammation.

Effects of Orally-Administered Bifidobacterium animalis subsp. lactis Strain BB12 on Dextran Sodium Sulfate-Induced Colitis in Mice

  • Chae, Jung Min;Heo, Wan;Cho, Hyung Taek;Lee, Dong Hun;Kim, Jun Ho;Rhee, Min Suk;Park, Tae-Sik;Kim, Yong Ki;Lee, Jin Hyup;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1800-1805
    • /
    • 2018
  • Inflammatory bowel disease, including Crohn's disease and ulcerative colitis (UC), is a chronically relapsing inflammatory disorder of the gastrointestinal tract. Intestinal epithelial cells (IECs) constitute barrier surfaces and play a critical role in maintaining gut health. Dysregulated immune responses and destruction of IECs disrupt intestinal balance. Dextran sodium sulfate (DSS) is the most widely used chemical for inducing colitis in animals, and its treatment induces colonic inflammation, acute diarrhea, and shortening of the intestine, with clinical and histological similarity to human UC. Current treatments for this inflammatory disorder have poor tolerability and insufficient therapeutic efficacy, and thus, alternative therapeutic approaches are required. Recently, dietary supplements with probiotics have emerged as promising interventions by alleviating disturbances in the indigenous microflora in UC. Thus, we hypothesized that the probiotic Bifidobacterium animalis subsp. lactis strain BB12 could protect against the development of colitis in a DSS-induced mouse model of UC. In the present study, oral administration of BB12 markedly ameliorated DSS-induced colitis, accompanied by reduced tumor necrosis factor-${\alpha}$-mediated IEC apoptosis. These findings indicate that the probiotic strain BB12 can alleviate DSS-induced colitis and suggest a novel mechanism of communication between probiotic microorganisms and intestinal epithelia, which increases intestinal cell survival by modulating pro-apoptotic cytokine expression.

Bioconversion of Soybean Curd Residues into Functional Ingredients with Probiotics

  • Oh, Soo-Myung;Kim, Chan-Shick;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.138-143
    • /
    • 2004
  • Soybean curd residues (SCR) obtained from hot and cold manufacturing processes were fermented by indigenous microorganisms, Lactobacillus rhamnosus LS and Bacillus firmus NA-l for 15 h at 37$^{\circ}C$. The pH, acidity, viable cell counts, and tyrosine content were evaluated in samples with variations in sugar, starter and type of SCR. The raw Doowon SCR (D-SCR, cold-processed) fermented by indigenous microorganism had a 0.9% acidity and 6.7 ${\times}$ 10$^{7}$ CFU/g viable cell counts, compared with the 0.11 % acidity and 6.7 ${\times}$ 10$^{6}$ CFU/g viable cell counts of raw fermented Pulmuwon SCR (P-SCR, hot-processed). After fermentation of raw P-SCR with 1 % glucose and 1 % L. rhamnosus LS starter, the viable cell counts, tyrosine content and acidity were 4.7 ${\times}$ 10$^{8}$ CFU/g, 16.3 mg% and 0.9%, respectively. In addition, the raw P-SCR fermented with Bacillus firmus NA-l as co-starter had a 0.45% acidity, 2.4 ${\times}$ 10$^{8}$ CFU/g lactic acid bacteria, and 3.3 ${\times}$ 10$^{6}$ CFU/g Bacillus sp. In particular, the tyrosine content was increased 5 fold. The drying of fermented SCR was completed by hot-air drying (5$0^{\circ}C$) within 12 h; the dried P-SCR and D-SCR had 1.8 ${\times}$ 10$^{7}$ CFU/g and 5.3 ${\times}$ 10$^{6}$ CFU/g viable cell counts, respectively. The concentrate of methanol extract from fermented D-SCR inhibited the initial cell growth of E. coli, Staphylococcus aureus and Pseudomonas aeruginosa in liquid culture.

Probiotic Potential of Pediococcus acidilactici and Enterococcus faecium Isolated from Indigenous Yogurt and Raw Goat Milk

  • Sarkar, Shovon Lal;Hossain, Md. Iqbal;Monika, Sharmin Akter;Sanyal, Santonu Kumar;Roy, Pravas Chandra;Hossain, Md. Anwar;Jahid, Iqbal Kabir
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.276-286
    • /
    • 2020
  • Probiotics are live microorganisms that, when administered in adequate amounts, confer health benefits to the host. This study was conducted for the isolation of potential lactic acid bacteria (LAB) with probiotic properties from goat milk and yogurt. Several tests were conducted in vitro using the standard procedures for evaluating the inhibitory spectra of LAB against pathogenic bacteria; tolerance to NaCl, bile salt, and phenol; hemolytic, milk coagulation, and bile salt hydrolase activities; gastrointestinal transit tolerance; adhesion properties; and antibiotic susceptibility. Among 40 LAB strains screened according to culture characteristics, five isolates exhibited antagonistic properties. Three were identified as Pediococcus acidilactici, and two were identified as Enterococcus faecium, exploiting 16S rRNA gene sequencing. All the isolates succeeded in the gastrointestinal transit tolerance assay and successively colonized mucosal epithelial cells. Based on the results of these in vitro assays, both P. acidilactici and E. faecium can be considered as potential probiotic candidates.

Potential Probiotic Properties of Lactobacillus johnsonii IDCC 9203 Isolated from Infant Feces (유아 분변에서 분리한 Lactobacillus johnsonii IDCC 9203의 잠재적 프로바이오틱 특성)

  • Lee, Seung-Hun;Yang, Eun-Hee;Kwon, Hyuk-Sang;Kang, Jae-Hoon;Kang, Byung-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.121-127
    • /
    • 2008
  • A strain IDCC 9203 isolated from infant feces was identified as Lactobacillus johnsonii on the basis of 16S rDNA sequence analysis. L. johnsonii IDCC 9203 was highly resistant to acid (MRS broth at pH 2.3) and bile (MRS broth with 0.3% oxgall). The antibacterial activities of L. johnsonii IDCC 9203 was examined against Salmonella typhimurium KCTC 2054. The growth of S. typhimurium KCTC 2054 was inhibited by the cell-free culture supernatant (at pH 4.0) of L. johnsonii IDCC 9203 as well as by the respective control (MRS broth at pH 4.0). Antimicrobial effect against S. typhimurium KCTC 2054 of L. johnsonii IDCC 9203 was probably due to the lactic acid. By an in vitro cell adhesion model, L. johnsonii IDCC 9203 preincubated or coincubated with Caco-2 cells reduced the adhesion of S. typhimurium KCTC 2054 to Caco-2 cells by 74% or 47.1%, respectively. Also in an in vivo model, L. johnsonii IDCC 9203 was colonized in mice intestines which were disrupted by ampicillin treatment. Its proliferation in the mice intestines reduced abnormal salmonella growth from $10^9CFU/g$ feces to $10^5CFU/g$ feces as an indigenous level. The results obtained in this study suggest that L. johnsonii IDCC 9203 may be a potential probiotic strain.

Probiotic Potential of Pediococcus pentosaceus BCNU 9070 (프로바이오틱 Pediococcus pentosaceus BCNU 9070 균주)

  • Shin, Hwa-Jin;Choi, Hye-Jung;Kim, Dong-Wan;Ahn, Cheol-Soo;Lee, Young-Geun;Jeong, Young-Kee;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1194-1200
    • /
    • 2012
  • Lactic acid bacteria are generally recognized as beneficial probiotic organisms. Recent studies revealed that the potential of probiotic strains was essentially dependent on the bacterial-binding and adhesion capabilities to gut epithelial cells and the hydrophobicity of the cell surface. In this study, we screened some indigenous lactic acid bacteria from Kimchi and selected one lactic acid bacterium as a potential probiotic based on its cell surface hydrophobicity. Analysis of the 16S rRNA gene sequences of probiotic isolates indicated that the selected isolate (BCNU 9070 strain) was a member of Pediococcus pentosaceus. P. pentosaceus BCNU 9070 showed resistance to bile acids and acidic pH. The P. pentosaceus BCNU 9070 strain also inhibited the cell growth of six food-borne pathogens including Listeria monocytogenes and Shigella sonnei. In addition, the P. pentosaceus BCNU 9070 strain expressed bile salt hydrolase activity and showed an ability to assimilate cholesterol in vitro. On the basis of these results, P. pentosaceus BCNU 9070 is considered to have probiotic potential for applications in functional foodstuffs.