• Title/Summary/Keyword: Korean inclination

Search Result 1,590, Processing Time 0.027 seconds

Analysis of the root position and angulation of maxillary premolars in alveolar bone using cone-beam computed tomography

  • Yun-Hoa, Jung;Bong-Hae, Cho;Jae-Joon, Hwang
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.365-373
    • /
    • 2022
  • Purpose: This study investigated whether the relationship between the maxillary sinus and the root of the maxillary premolar is correlated with the root position and whether there is a difference in the long axis angle of premolars and the buccal bone thickness according to the sinus-root relationship and root position. Materials and Methods: Cone-beam computed tomographic images of 587 maxillary first premolars and 580 second premolars from 303 patients were retrospectively reviewed. The maxillary sinus floor-root relationship was classified into 4 types, and the root position in the alveolar bone was evaluated as buccal, middle, or palatal. The long axis angle of the maxillary premolars in the alveolar bone and the buccal bone thickness were measured. The correlation between these parameters was analyzed. Results: The maxillary sinus floor-root relationship showed a statistically significant correlation with the root position in the alveolar bone. Most maxillary first premolars were buccally located, and more than half of the second premolars had their roots in the middle. The long axis angle of the premolars was significantly larger in buccal-positioned teeth than in middle-positioned teeth, and the buccal bone was thinner. Conclusion: When the root of the maxillary premolar was separated from the sinus floor, the premolar was often located on the buccal side. Most of the maxillary first premolars had a thinner buccal bone and larger inclination than the second premolars. It is recommended to evaluate the root position, sagittal angle and buccal bone thickness using CBCT for implant treatment planning.

Mixed reality visualization in shoulder arthroplasty: is it better than traditional preoperative planning software?

  • Sejla Abdic;Nicholas J. Van Osch;Daniel G. Langohr;James A. Johnson;George S. Athwal
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.117-125
    • /
    • 2023
  • Background: Preoperative traditional software planning (TSP) is a method used to assist surgeons with implant selection and glenoid guide-pin insertion in shoulder arthroplasty. Mixed reality (MR) is a new technology that uses digital holograms of the preoperative plan and guide-pin trajectory projected into the operative field. The purpose of this study was to compare TSP to MR in a simulated surgical environment involving insertion of guide-pins into models of severely deformed glenoids. Methods: Eight surgeons inserted guide-pins into eight randomized three-dimensional-printed severely eroded glenoid models in a simulated surgical environment using either TSP or MR. In total, 128 glenoid models were used and statistically compared. The outcomes compared between techniques included procedural time, difference in guide-pin start point, difference in version and inclination, and surgeon confidence via a confidence rating scale. Results: When comparing traditional preoperative software planning to MR visualization as techniques to assist surgeons in glenoid guide pin insertion, there were no statistically significant differences in terms of mean procedure time (P=0.634), glenoid start-point (TSP=2.2±0.2 mm, MR=2.1±0.1 mm; P=0.760), guide-pin orientation (P=0.586), or confidence rating score (P=0.850). Conclusions: The results demonstrate that there were no significant differences between traditional preoperative software planning and MR visualization for guide-pin placement into models of eroded glenoids. A perceived benefit of MR is the real-time intraoperative visibility of the surgical plan and the patient's anatomy; however, this did not translate into decreased procedural time or improved guide-pin position.

Analysis of Satellite Orbit Elements and Study of Constellation Methods for Micro-satellite System Operation (초소형위성체계 운용을 위한 위성궤도요소 분석 및 위성군 배치기법에 대한 고찰)

  • Soung Sub Lee;Jihae Son;Youngbum Song
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • This study analyzes considerations for satellite orbit elements for the national micro-satellite system to effectively perform its mission in accordance with the operational concept, and compares the conventionally used Walker method to improve the performance of the satellite constellation method of the repeating ground track orbit. In satellite orbit element analysis, altitude candidate values of micro-satellite system, use of eccentricity and argument of perigee through frozen orbit, necessity of selection of appropriate orbit inclination, and satellite phasing rules for flying the same repeating ground track orbit are proposed. Based on these analysis results, the superiority of the constellation method of the repeating ground track orbit compared to the Walker method is verified in terms of revisit performance analysis, global coverage characteristics, and orbit consistency.

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A. SMALL;P. NAGARANI;M. NARAHARI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.51-70
    • /
    • 2023
  • The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.

Measurement of Residual Stress Distribution in the Depth Direction of Annealed Materials of Lapped Bearing Steel Using Weighted Averaging Analysis Method (가중평균 해석법을 이용한 래핑된 베어링강 어닐링재료의 깊이방향에 대한 잔류응력분포 측정)

  • Chang-Suk Han;Chan-Woo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.205-213
    • /
    • 2023
  • This paper reports the results of an experimental examination using X-rays to test annealing materials for lapped bearing steel (STB2), to confirm the validity of the weighted averaging analysis method. The distribution behavior for the α𝜓-sin2𝜓 diagram and the presence or absence of differences in the peak method, half-value breadth method, and centroid method were investigated. When lapping the annealed bearing steel (STB2) material, a residual stress state with a non-directional steep gradient appeared in the surface layer, and it was found that the weighted averaging analysis method was effective. If there is a steep stress gradient, the sin2𝜓 diagram is curved and the diffraction intensity distribution curve becomes asymmetric, resulting in a difference between the peak method, half-value breadth method, and centroid method. This phenomenon was evident when the stress gradient was more than 2~3 kg/mm2/㎛. In this case, if the position of the diffraction line is determined using the centroid method and the weighted averaging analysis method is applied, the stress value on the surface and the stress gradient under the surface can be obtained more accurately. When the stress gradient becomes a problem, since the curvature of the sin2𝜓 diagram appears clearly in the region of sin2𝜓 > 0.5, it is necessary to increase the inclination angle 𝜓 as much as possible. In the case of a lapping layer, a more accurate value can be obtained by considering 𝜎3 in the weighted averaging analysis method. In an isotropic biaxial residual stress state, the presence or absence of 𝜎3 can be determined as the presence or absence of strain for sin2𝜓≈0.4.

A Case Study on the Cause Analysis of Subsidence in Limestone Mine Using LiDAR-Based Geometry Model (라이다 기반 정밀 형상 모델 활용 석회석 광산 지반침하 원인분석 사례연구)

  • Hwicheol Ko;Taewook Ha;Sang Won Jeong;Sunghyun Park;Seung-tae Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.126-140
    • /
    • 2023
  • In this study, the cause of subsidence in limestone mine was analyzed using a LiDAR-based geometry model. Using UAV and ground-based LiDAR systems, a precise geometry model was constructed for the subsidence surface and mine tunnel, and the results of on-site geological survey and rock mass classification were utilized. Through the geometry model, distribution of thickness of crown pillar and faults around the subsidence area, calculation of the volume of the subsidence area and subsidence deposit, and analysis of the subsidence surface inclination were conducted. Through these analyzes, the causes of ground subsidence were identified.

Characteristics of Basin Topography and Rainfall Triggering Debris Flow (토석류 발생 지형과 유발 강우 특성 분석)

  • Kim, Kyung-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.263-271
    • /
    • 2008
  • Investigation and analysis of the debris flow characteristics such as basin topography, geologic conditions of initiation location and triggering rainfall are required to systematically mitigate debris flow hazard. In this paper, 48 debris flows which had caused some damages to the highway in the past 5 years are investigated and their characteristics of basic topography and triggering rainfall are analyzed. Debris flows are found to occur in small basins having the area of $0.01{\sim}0.65km^2$ range and mostly initiated by the surficial failure of natural slope having the inclination of 29~55 degree during the intense rainfall. As for the triggering rainfall, rainfall of 2 to 5 year recurrence frequency are found to be able to trigger the debris flow and magnitude of debris flow in a basin could depend on the rainfall intensity and cumulative amount.

A Study about The Taxi Driver's Car Accident Characteristics (택시 운전자의 교통사고 야기 성향 분석에 관한 연구)

  • Jang, Seok Yong;Jung, Heon Young;Lee, Won Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.191-203
    • /
    • 2008
  • According to a characteristic analysis of traffic accidents of industrial vehicles (RTSA 2007), the occurrence rate and lethality per 10,000 vehicles is 6.7 times higher and 5.3 times higher than that of non-industrial vehicles respectively. For the recent 10 years, in contrast to the 1.5% decrease of the annual rate of entire traffic accidents, the accident rate of industrial vehicles have been increasing 2.0% on the annual average. For the recent 10 years, the accidents of a freight truck and bus have been steadily falling off. But, in the case of a taxi, it has constantly been rising 5.6%. In these situations, the countermeasures to decrease the accident rate are suggested by grasping the inclination of taxi drivers through Q analysis which is character and psychology analysis method.

Parametric Study on the Buffeting Response for a Cable-Stayed Bridge (사장교의 버페팅 응답 변수 연구)

  • Kim, Ho-Kyung;Choi, Sung Won;Kim, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.371-382
    • /
    • 2006
  • A buffeting analysis is utilized for the estimation of aerodynamic vulnerability of a cable-stayed bridge due to upcoming wind turbulences. The buffeting analysis requires several input parameters such as structural parameters, aerodynamic parameters, and aero-elastic parameters. This study is motivated to estimate the sensitivity of these parameters on buffeting responses. The Seohae bridge is selected as an example bridge. The investigated parameters consist of the inclination of lift and drag coefficient of stiffening girder section, exponential decay factors of span-wise distributed wind turbulences, roughness length, spectra of wind velocity fluctuation, and structural damping. The buffeting response showed high dependency on the input parameters. As conclusions, the importance of parameter selection is emphasized. A further study is also proposed for more general conclusions.

Movable Anchorage System for Mitigation of Cable Vibration in Cable-Stayed Bridges with Sag (Sag가 고려된 사장교 케이블의 진동저감을 위한 Movable Anchorage 시스템)

  • Hwang, Inho;Park, Jun Hyung;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.657-664
    • /
    • 2008
  • Rain-wind induced cable vibration can cause the damages in the cable-stayed bridge due to very little inherent damping characteristics and low fundamental frequency. External Dampers attached to stay cables near anchorages have been shown to be effective means at short stay-cables. However, installation locations of external dampers are limited to a particular range due to aesthetic and practical reasons for very long stay-cables. A recent study by the authors showed that the stay-cable vibration system can perform better than the optimal passive viscous damper, thereby demonstrating its applicability in large cable-stayed bridges. This paper extends the previous study on the taut string representation of the cable by adding cable sag and inclination. The response of the proposed system compared to those of the cable with and without an external damper, and the movable anchorage system provides very effective mitigation of cable vibration. Cable damping ratio is seen to be remarkably reduced by movable anchorage system for a wide range of cable sag. This result shows that the sag effects of the proposed system should be considered.