• Title/Summary/Keyword: Korean genome

Search Result 3,919, Processing Time 0.028 seconds

Stable Inheritance of an Integrated Transgene and Its Expression in Phenylethylisothiocyanate-Enriched Transgenic Chinese cabbage (Phenylethylisothiocyanate 함량이 증진된 형질전환 배추에서의 도입유전자의 후대 유전 및 발현 안정성 검정)

  • Park, Ji-Hyun;Kim, Hyoung-Seok;Lee, Gi-Ho;Yu, Jae-Gyung;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.112-121
    • /
    • 2016
  • Development of genetically-modified (GM) crops enables the introduction of new traits to the plant to confer characteristics such as disease resistance, herbicide resistance and human health-promoting bioactivity. Successful commercialization of newly developed GM crops requires stable inheritance of integrated T-DNA and newly introduced traits through the multiple generations. This study was carried out to confirm the stable inheritance of the integrated T-DNA in $T_1$ and $T_2$ transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) that was genetically modified to increase concentrations of phenylethylisothiocyanate (PEITC), which is a potential anti-carcinogenic phytochemical. For this purpose, the IGA 1-3 ($T_1$ generation) and IGA 1-3-5 ($T_2$ generation) lines were selected by PCR and a IGA 1-3 transgenic plant ($T_1$ generation) was analyzed to confirm the T-DNA insertion site in the Chinese cabbage genome by VA-TAIL PCR. The results of this study showed that the introduced T-DNA in IGA 1 line was stably inherited to the next generations without any variations in terms of the structure of the transgenes, and this line also showed the expected transgene function that resulted in increased concentration of PEITC through the multiple generations. Finally, we confirmed the increased QR activity in IGA 1 $T_1$ and $T_2$ transgenic lines, which indicates an enhanced potential anti-carcinogenic bioactivity and its stable inheritance in IGA1 $T_1$ and $T_2$ transgenic lines.

The Studies of Activity of Retrotransposon(Tos17) according to Tissue Culture Periods in Rice(Oryza sativa L.) (벼 조직배양 기간에 따른 retrotransposon(Tos17)의 활성에 관한 연구)

  • Yang, Hee-Eun;Fang, Yilan;Shin, Young-Boum;Lee, Boung-Jin;Hong, Soon-Kwan
    • Korean Journal of Plant Resources
    • /
    • v.20 no.5
    • /
    • pp.389-397
    • /
    • 2007
  • Using the active-increment of Tos17 copies in the genome of Oryza sativa L., there were many studies about induction and selection of new mutants. This study mainly focuses on the induction for retrotransposon(Tos17) activity in the callus of Ilpumbyeo(Oryza sativa L.) according to varied culture period and condition. The objectives of this study are obtaining various mutants($M_1$) through plant regeneration, identification of the mutation relation with Tos17, and subsequent phenotyping of the mutants($M_2,\;M_3$). A total of 371 $M_1$ mutants was obtained. The degree of Tos17 activity obtained regeneration plants with each different culture period was evaluated by Southern blot analysis. The result showed that control Ilpumbyeo rice has 5 numbers of copies and the band numbers obtained 7, 8, 9.5, 12, 6, 13.5, 17.5 from culture period of 1, 2, 3, 5, 6, 7, 8 month, respectively. In this study, the result showed that most effectual culture period for activity of Tos17 in Ilpumbyeo rice is 5 month. Hereafter, collections and analysis of various recombination plants will act on an important factor in multiplication and preservation of $M_2$ and $M_3$ generation. And an urgent and important subject is a development of screening method for selection of diverse mutants.

Effect of methyl jasmonate on the glucosinolate contents and whole genome expression in Brassica oleracea (유묘기 양배추류에서 메틸자스모네이트에 의한 글루코시놀레이트 함량 변화 및 전사체 발현 분석)

  • Lee, Jeongyeo;Min, Sung Ran;Jung, Jaeeun;Kim, HyeRan
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.189-204
    • /
    • 2019
  • In this study, we analyzed the changes in glucosinolate content and gene expression in TO1000DH3 and Early big seedling upon methyl jasmonate (MeJA) treatment. Analysis of glucosinolate contents after MeJA treatment at $200{\mu}M$ concentration showed that the total glucosinolate content increased by 1.3-1.5 fold in TO1000DH3 and 1.3-3.8 fold in Early big compared to those before treatment. Aliphatic glucosinolates, progoitrin and gluconapin, were detected only in TO1000DH3, and the changes in the content of neoglucobrassicin were the greatest at 48 hours after MeJA treatment in TO1000DH3 and Early big. The transcriptomic analysis showed that transcripts involved in stress or defense reactions, or those related to growth were specifically expressed in TO1000DH3, while transcripts related to nucleosides or ATP biosynthesis were specifically expressed in Early big. GO analysis on transcripts with more than two-fold change in expression upon MeJA treatment, corresponding to 12,020 transcripts in TO1000DH3 and 13,510 transcripts in Early big, showed that the expression of transcripts that react to stimulus and chemical increased in TO1000DH3 and Early big, while those related to single-organism and ribosome synthesis decreased. In particular, the expression increased for all transcripts related to indole glucosinolate biosynthesis, which is associated with increase in glucobrassicin and neoglucobrassicin contents. Upon MeJA treatment, the expression of AOP3 (Bo9g006220, Bo9g006240), TGG1 (Bo14804s010) increased only in TO1000DH3, while the expression of Dof1.1 (Bo5g008360), UGT74C1 (Bo4g177540), and GSL-OH (Bo4g173560, Bo4g173550, Bo4g173530) increased specifically in Early big.

Characterization of Exolytic GH50A β-Agarase and GH117A α-NABH Involved in Agarose Saccharification of Cellvibrio sp. KY-GH-1 and Possible Application to Mass Production of NA2 and L-AHG (Cellvibrio sp. KY-GH-1의 아가로오스 당화 관련 엑소형 GH50A β-아가레이즈와 GH117A α-NABH의 특성 및 NA2와 L-AHG 양산에의 적용 가능성)

  • Jang, Won Young;Lee, Hee Kyoung;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.356-365
    • /
    • 2021
  • Recently, we sequenced the entire genome of a freshwater agar-degrading bacterium Cellvibrio sp. KY-GH-1 (KCTC13629BP) to explore genetic information encoding agarases that hydrolyze agarose into monomers 3,6-anhydro-L-galactose (L-AHG) and D-galactose. The KY-GH-1 strain appeared to possess nine β-agarase genes and two α-neoagarobiose hydrolase (α-NABH) genes in a 77-kb agarase gene cluster. Based on these genetic information, the KY-GH-1 strain-caused agarose degradation into L-AHG and D-galactose was predicted to be initiated by both endolytic GH16 and GH86 β-agarases to generate NAOS (NA4/NA6/NA8), and further processed by exolytic GH50 β-agarases to generate NA2, and then terminated by GH117 α-NABHs which degrade NA2 into L-AHG and D-galactose. More recently, by employing E. coli expression system with pET-30a vector we obtained three recombinant His-tagged GH50 family β-agarases (GH50A, GH50B, and GH50C) derived from Cellvibrio sp. KY-GH-1 to compare their enzymatic properties. GH50A β-agarase turned out to have the highest exolytic β-agarase activity among the three GH50 isozymes, catalyzing efficient NA2 production from the substrate (agarose, NAOS or AOS). Additionally, we determined that GH117A α-NABH, but not GH117B α-NABH, could potently degrade NA2 into L-AHG and D-galactose. Sequentially, we examined the enzymatic characteristics of GH50A β-agarase and GH117A α-NABH, and assessed their efficiency for NA2 production from agarose and for production of L-AHG and D-galactose from NA2, respectively. In this review, we describe the benefits of recombinant GH50A β-agarase and GH117A α-NABH originated from Cellvibrio sp. KY-GH-1, which may be useful for the enzymatic hydrolysis of agarose for mass production of L-AHG and D-galactose.

Comparative Analysis of Mitochondrial Genomes of the Genus Sebastes (Scorpaeniformes, Sebastidae) Inhabiting the Middle East Sea, Korea (한국 동해 중부해역에 서식하는 볼락속(Sebastes) 어류의 미토콘드리아 유전체 비교분석)

  • Jang, Yo-Soon;Hwang, Sun Wan;Lee, Eun Kyung;Kim, Sung
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.226-239
    • /
    • 2021
  • Sebastes minor, Sebastes trivittatus, Sebastes owstoni, and Sebastes steindachneri are indigenous fish species inhabiting the central part of the East Sea, Korea. In order to understand the molecular evolution of these four rockfishes, we sequenced the complete mitochondrial genomes (mitogenomes) of S. minor and S. trivittatus. To further analyze the phylogeny of Sebastes species, the mitogenomes of 16 rockfishes were comparatively investigated. The complete mitochondrial DNA (mtDNA) nucleotide sequences of S. minor and S. trivittatus were 16,408 bp and 16,409 bp in length, respectively. A total of 37 genes were found in mtDNA of S. minor and S. trivittatus, including 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes, which exhibited similar characters with other Sebastes species in the East Sea, Korea. In addition, we detected a conserved motif "ATGTA" in the control region of the four Sebastes species, but no tandem repeat units. Comparative analyses of the congeneric mitochondrial genomes were performed, which showed that control regions were more variable than the concatenated protein-coding genes. As a result of analysing phylogenetic relationships of four Sebastes species by using concatenated nucleotide sequences of 13 protein-coding genes, S. minor, S. trivittatus, S. owstoni and S. steindachneri were clustered into three clades. The phylogenetic tree exhibited that S. minor and S. steindachneri shared a closer relationship, whereas S. trivittatus and S. vulpes formed another distinct clade. Our results contribute to a better understanding of evolutionary patterns of Sebastes species inhabiting the middle East Sea, Korea.

An Analysis of the Heritability of Phenotypic Traits Using Chloroplast Genomic Information of Legume Germplasms (엽록체 유전정보를 이용한 두류 유전자원 형태적 형질의 유전력 분석)

  • Dong Su Yu;Yu-Mi Choi;Xiaohan Wang;Manjung Kang
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.369-380
    • /
    • 2023
  • Developing and breeding improved legume-based food resources require collecting useful genetic traits with heritability even though requiring some time-consuming, costly, and labor intensive. We attempted to infer heritability of nine genetic traits-days to flowering, days to maturity, period from flowering to maturity, the number of seeds per pod, 100-seeds weight, and four contents such as crude protein, crude oil, crude fiber, and dietary fiber-using 455 homologous chloroplast gene sets of six species of legumes. Correlation analysis between genetic trait differences and phylogenetic distance of homologous gene sets revealed that days to flowering, the number of seeds per pod, and crude oil content were influenced by genetic factors rather than environmental factors by 62.86%, 69.45%, 57.14% of correlated genes (P-value ≤ 0.05) and days to maturity showed intermediate genetic effects by 62.42% (P-value ≤ 0.1). The period from flowering to maturity and 100-seeds weight showed different results compared to those of some previous studies, which may be attributed to highly complicated internal (epistatic or additive gene effects) and external effects (cultural environment and human behaviors). Despite being slightly unexpected, our results and method can widely contribute to analyze heritability by including genetic information on mitochondria, nuclear genome, and single nucleotide polymorphisms.

Development of a Molecular Selection Marker for Bacillus licheniformis K12 (Bacillus licheniformis K12 균주 분자 선발 마커 개발)

  • Young Jin Kim;Sam Woong Kim;Tae Wok Lee;Won-Jae Chi;Woo Young Bang;Ki Hwan Moon;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.808-819
    • /
    • 2023
  • This study was conducted to develop a selection marker for the identification of the Bacillus licheniformis K12 strain in microbial communities. The strain not only demonstrates good growth at moderate temperatures but also contains enzymes that catalyze the decomposition of various polymer materials, such as proteases, amylases, cellulases, lipases, and xylanases. To identify molecular markers appropriate for use in a microbial community, a search was conducted to identify variable gene regions that show considerable genetic mutations, such as recombinase, integration, and transposase sites, as well as phase-related genes. As a result, five areas were identified that have potential as selection markers. The candidate markers were two recombinase sites (BLK1 and BLK2), two integration sites (BLK3 and BLK4), and one phase-related site (BLK5). A PCR analysis performed with different Bacillus species (e.g., B. licheniformis, Bacillus velezensis, Bacillus subtilis, and Bacillus cereus) confirmed that PCR products appeared at specific locations in B. licheniformis: BLK1 in recombinase, BLK2 in recombinase family protein, and BLK3 and BLK4 as site-specific integrations. In addition, BLK1 and BLK3 were identified as good candidate markers via a PCR analysis performed on subspecies of standard B. licheniformis strains. Therefore, the findings suggest that BLK1 can be used as a selection marker for B. licheniformis species and subspecies in the microbiome.

Genetic Counseling in Korean Health Care System (한국 의료제도와 유전상담 서비스의 구축)

  • Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.8 no.2
    • /
    • pp.89-99
    • /
    • 2011
  • Over the years Korean health care system has improved in delivery of quality care to the general population for many areas of the health problems. The system is now being recognized in the world as the most cost effective one. It is covered by the uniform national health insurance policy for which most people in Korea are mandatory policy holders. Genetic counseling service, however, which is well recognized as an integral part of clinical genetics service deals with diagnosis and management of genetic condition as well as genetic information presentation and family support, is yet to be delivered in comprehensive way for the patients and families in need. Two major obstacles in providing genetic counseling service in korean health care system are identified; One is the lack of recognition for the need for genetic counseling service as necessary service by the national health insurance. Genetic counseling consumes a significant time in delivery and the current very low-fee schedule for physician service makes it very difficult to provide meaningful service. Second is the critical shortage of qualified professionals in the field of medical genetics and genetic counseling who can provide the service of genetic counseling in clinical setting. However, recognition and understanding of the fact that the scope and role of genetic counseling is expanding in post genomic era of personalized medicine for delivery of quality health care, will lead to the efforts to overcome obstacles in providing genetic counseling service in korean health care system. Only concerted efforts from health care policy makers of government on clinical genetics service and genetic counseling for establishing adequate reimbursement coverage and professional communities for developing educational program and certification process for professional genetic counselors, are necessary for the delivery of much needed clinical genetic counseling service in Korea.