• Title/Summary/Keyword: Korean fir (Abies koreana Wilson)

Search Result 14, Processing Time 0.03 seconds

A Phytosociological Description of the Abies koreana Forest on Mt. Halla in Cheju Island, Korea (한라산 구상나무림에 대한 식물사회학적 연구)

  • ;;Kikuchik, T.
    • The Korean Journal of Ecology
    • /
    • v.20 no.4
    • /
    • pp.293-298
    • /
    • 1997
  • The floristic composition of the Korean-fir(Abies koreana Wilson) forest on Mt. Halla in Cheju Island, Korea, was described and some other phytosociological features were noted. The dense tree layer of the Abies koreana forest under consideration attained a height of no more than 5-7m. The shrub layer was 1.2-2m high and usually inconspicuous, while the herb layer, 0.3-0.5m high, was remarkable. The forest contained a number of species which are characteristic of the subalopine coniferous in Japan, particularly that in Hokkaido. Moreover, the specific synchronized regeneration called wave-regeneration was found in the forest on Mt. Halla at several sites even though the data on this phenomenon do not present in the present report.

  • PDF

A Detection of Novel Habitats of Abies Koreana by Using Species Distribution Models(SDMs) and Its Application for Plant Conservation (종 분포 모형을 활용한 새로운 구상나무 서식지 탐색, 그리고 식물보전 활용)

  • Kim, Nam-Shin;Han, DongUk;Cha, Jin-Yeol;Park, Yong-Su;Cho, Hyeun-Je;Kwon, Hye-Jin;Cho, Yong-Chan;Oh, Seung-Hwan;Lee, Chang-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.135-149
    • /
    • 2015
  • Korean fir(Abies koreana E.H.Wilson 1920), endemic tree species of Korean peninsula, is considered as vulnerable and endangered species to recent rapid environmental changes such as land use and climate change. There are limited activities and efforts to find natural habitats of Korean fir for conservation of the species and habitats. In this study, by applying SDMs (Species Distribution Models) based on climate and topographic factors of Korean fir, we developed Korean fir's predicted distribution model and explored novel natural habitats. In Mt. Shinbulsan, Youngnam region and Mt. Songnisan, we could find korean fir's two novel habitat and the former was the warmest($13^{\circ}C$ in annual mean temperature), the driest(1,200mm~1,600mm in annual rainfall) and relatively low altitude environment among Korean fir's habitats in Korea. The result of SDMs did not include mountain areas of Gangwon-do as habitats of A. nephrolepis, because there were different contributions of key habitat environment factors, summer rainfall, winter mean temperature and winter rainfall, between A. koreana and A. nephrolepis. Our results raise modification of other distribution models on Korean fir. Novel habitat of Korean fir in Mt. Shinbulsan revealed similar habitat affinity of the species, ridgy and rocky site, with other habitats in Korea. Our results also suggest potential areas for creation of Korea fir's alternative habitats through species reintroduction in landscape and ecosystem level.

Review Forty-year Studies of Korean fir(Abies koreana Wilson) (국내 구상나무(Abies koreana Wilson) 연구 40년: 검토 및 제언)

  • Koo, Kyung Ah;Kim, Da-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.5
    • /
    • pp.358-371
    • /
    • 2020
  • As climate change is expected to lead to a severe reduction of biodiversity, studies to investigate the reasons for habitat loss, growth decline, and death of Korean fir (Abies koreana Wilson), endangered alpine/subalpine species in Korea, have been conducted for years but found no clear answer yet. This study reviewed previous studies on Korean fir published in the journals in the past 40 years, 1980 through 2020, into 10-year units, examined the study trend by period, region, and subject with a focus on ecological studies, and analyzed the study results. The ecological studies were categorized into evolutionary ecology, physiological ecology, population ecology, and landscape ecology. Based on the results, we suggested the required research fields in the future. We found a total of 73 papers published in the past 40 years and 48 (65.8%) of them published in the past 10 years. In terms of region, Mt. Halla accounted for the most as 41 papers were on it. In terms of ecological subjects, the physiological ecology accounted for the most with 38, and the evolutionary ecology accounted for the least with 10. The review of the study results showed that many studies identified water stress caused by the water resource imbalance due to temperature increase and spring precipitation reduction following climate change as the main reason for the decline and habitat loss of Korean fir. However, recent studies suggested other factors, such as soil environment, disturbing organisms, and climatic events. The cause of the decline and death of the Korean fir not yet being clearly identified is that most of the studies dealt with the basic content, were carried out intermittently, and were concentrated in some regions. Therefore, we need long-term studies with advanced technology in each study subject at a local scale to find the cause of Korean fir decline and present sustainable management and conservation. Moreover, it is necessary to extend our study subjects to ecosystem ecology and systems ecology to integrate the results from various study subjects for a comprehensive understanding of the reason for Korean fir declines. The results of comprehensive studies could provide clearer answers for Korean fir's declines and the alternatives of conservation management and practices.

Projecting the Potential Distribution of Abies koreana in Korea Under the Climate Change Based on RCP Scenarios (RCP 기후변화 시나리오에 따른 우리나라 구상나무 잠재 분포 변화 예측)

  • Koo, Kyung Ah;Kim, Jaeuk;Kong, Woo-seok;Jung, Huicheul;Kim, Geunhan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.19-30
    • /
    • 2016
  • The projection of climate-related range shift is critical information for conservation planning of Korean fir (Abies koreana E. H. Wilson). We first modeled the distribution of Korean fir under current climate condition using five single-model species distribution models (SDMs) and the pre-evaluation weighted ensemble method and then predicted the distributions under future climate conditions projected with HadGEM2-AO under four $CO_2$ emission scenarios, the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5. We also investigated the predictive uncertainty stemming from five individual algorithms and four $CO_2$ emission scenarios for better interpretation of SDM projections. Five individual algorithms were Generalized linear model (GLM), Generalized additive model (GAM), Multivariate adaptive regression splines (MARS), Generalized boosted model (GBM) and Random forest (RF). The results showed high variations of model performances among individual SDMs and the wide range of diverging predictions of future distributions of Korean fir in response to RCPs. The ensemble model presented the highest predictive accuracy (TSS = 0.97, AUC = 0.99) and predicted that the climate habitat suitability of Korean fir would increase under climate changes. Accordingly, the fir distribution could expand under future climate conditions. Increasing precipitation may account for increases in the distribution of Korean fir. Increasing precipitation compensates the negative effects of increasing temperature. However, the future distribution of Korean fir is also affected by other ecological processes, such as interactions with co-existing species, adaptation and dispersal limitation, and other environmental factors, such as extreme weather events and land-use changes. Therefore, we need further ecological research and to develop mechanistic and process-based distribution models for improving the predictive accuracy.

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.

Trend Analysis of Vegetation Changes of Korean Fir (Abies koreana Wilson) in Hallasan and Jirisan Using MODIS Imagery (MODIS 시계열 위성영상을 이용한 한라산과 지리산 구상나무 식생 변동 추세 분석)

  • Minki Choo;Cheolhee Yoo;Jungho Im;Dongjin Cho;Yoojin Kang;Hyunkyung Oh;Jongsung Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.325-338
    • /
    • 2023
  • Korean fir (Abies koreana Wilson) is one of the most important environmental indicator tree species for assessing climate change impacts on coniferous forests in the Korean Peninsula. However, due to the nature of alpine and subalpine regions, it is difficult to conduct regular field surveys of Korean fir, which is mainly distributed in regions with altitudes greater than 1,000 m. Therefore, this study analyzed the vegetation change trend of Korean fir using regularly observed remote sensing data. Specifically, normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), land surface temperature (LST), and precipitation data from Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievalsfor GPM from September 2003 to 2020 for Hallasan and Jirisan were used to analyze vegetation changes and their association with environmental variables. We identified a decrease in NDVI in 2020 compared to 2003 for both sites. Based on the NDVI difference maps, areas for healthy vegetation and high mortality of Korean fir were selected. Long-term NDVI time-series analysis demonstrated that both Hallasan and Jirisan had a decrease in NDVI at the high mortality areas (Hallasan: -0.46, Jirisan: -0.43). Furthermore, when analyzing the long-term fluctuations of Korean fir vegetation through the Hodrick-Prescott filter-applied NDVI, LST, and precipitation, the NDVI difference between the Korean fir healthy vegetation and high mortality sitesincreased with the increasing LST and decreasing precipitation in Hallasan. Thissuggests that the increase in LST and the decrease in precipitation contribute to the decline of Korean fir in Hallasan. In contrast, Jirisan confirmed a long-term trend of declining NDVI in the areas of Korean fir mortality but did not find a significant correlation between the changes in NDVI and environmental variables (LST and precipitation). Further analyses of environmental factors, such as soil moisture, insolation, and wind that have been identified to be related to Korean fir habitats in previous studies should be conducted. This study demonstrated the feasibility of using satellite data for long-term monitoring of Korean fir ecosystems and investigating their changes in conjunction with environmental conditions. Thisstudy provided the potential forsatellite-based monitoring to improve our understanding of the ecology of Korean fir.

A Study on the Occurrence of Seedlings and Saplings of Korean fir (Abies koreana E.H. Wilson) on the East slope of Mt. Hallasan National Park (한라산국립공원 동사면의 구상나무(Abies koreana E.H. Wilson) 유묘 및 치수 발생 현황)

  • Lee, Jong-Won;Choi, Im Jun;Lee, Su Hong;Lim, Won Taek;Kim, Jin-Won;Kang, Shin-Ho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.36-36
    • /
    • 2019
  • 본 연구는 한라산국립공원 동사면에 위치한 구상나무숲 장기생태 모니터링 5ha 조사지역 ($20{\times}20m$, 125개 방형구)에서 구상나무의 유묘 및 치수 발생 현황을 파악하기 위하여 수행되었다. 조사는 2016년 6~8월 사이에 $5{\times}5m$ 방형구 125곳에 대해 계통추출법을 적용하여 실시하였다. 조사한 전체 125개 방형구 중에서 54개에서만 유묘가 관찰되었으며, 그 내용은 유묘 615개체 및 치수 1개체로 총 616개체가 발견되었다. 그러나 과반수의 71개 방형구에서 치수뿐만 아니라 유묘도 출현하지 않았다. 심지어 전체 125개 방형구에서 유묘가 가장 많이 관찰된 방형구(2-6지역, 95개체)를 제외하면, 나머지 124개 방형구의 평균 유묘 개체수는 4.2개로 매우 적었고 높이도 35cm 이하에 불과했다. 이와 함께 장기생태 모니터링 조사 지역 내에서 $1{\times}1m$ 방형구 183곳에 대해 단순 무작위 추출법으로 발생지 조사를 수행하였다. 발생지 조사 결과 유묘 2,518개체, 치수 2개체 및 유목 2개체 등 총 2,522개체가 발견되어 계통추출법을 적용한 조사와 유사한 결과가 나타났다. 본 연구를 통해 한라산국립공원 동사면 구상나무숲 내에서 구상나무 유묘의 발생은 어느 정도 이루어지고 있으나, 교란으로 인하여 치수로의 발달이 제한되는 것으로 판단된다. 여러 교란 요인 중에서 조사된 총 3,138개체 중 12.1%, 381개체에서 유제류인 노루에 의한 섭식이 확인되어 노루의 섭식이 유묘 발생 및 치수 발달에 교란을 야기하는 가장 중요한 요인으로 추정해볼 수 있다. 한반도 특산식물 구상나무의 보전 대책 수립을 위한 유묘 및 치수 교란 원인에 대한 지속적인 모니터링이 진행되어야 한다고 사료된다.

  • PDF

The ecological response of the climate change indicator species, Korean fir (Abies koreana E. H. Wilson) (기후변화 지표종 구상나무(Abies koreana E. H. Wilson)의 생태학적 반응)

  • Yoon Seo Kim;Se Hee Kim;Jung Min Lee;Ji Won Park;Yeo Bin Park;Jae Hoon Park;Eui Joo Kim;Kyeong Mi Cho;Yoon Kyung Choi;Ji Hyun Seo;Joo Hyun Seo;Gyu Ri Kim;Ju Seon Lee;Do Hun Ryu;Min Sun Kim;Young Han You
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.62-71
    • /
    • 2024
  • To assess the ecological changes of Korean fir (Abies koreana E. H. Wilson) under climate change conditions, growth and physiological responses were analyzed over a 5-year period in a control group (outdoors) and in a treatment group where the temperature and CO2 levels were elevated to closely resemble RCP 4.5 conditions. The results showed an increasing trend in annual branch length of A.koreana in the climate change treatment group over time. While climate change conditions did not significantly impact the morphological differences of A.koreana leaves, they did influence the biomass of the leaves, suggesting that as climate change progresses, the productivity of A.koreana leaves may decline. On the other hand, the chlorophyll content in A.koreana under climate change conditions was higher in the climate change treatment group, whereas the photosynthesis rate, transpiration rate, water use efficiency and stomatal conductance was higher in the control group. This suggests that an environment with elevated temperature and CO2 could influence an increase in stomatal density, but having a negative impact on photosynthetic reactions. Further research on stomatal density under each environmental treatment will be required to confirm this hypothesis. Additionally, as this study only observed changes in leaf biomass, further empirical research should be considered to understand the changes in biomass of A.koreana under climate change conditions. In conclusion, the environmental adaptability of A.koreana is expected to weaken in the long term under elevated temperatures and CO2.

An Analysis of Morphological Variation in Abies koreana Wilson and A. nephrolepis (Traut.) Maxim. of Korea (Pinaceae) and Their Phylogenetic Problems (한국산(韓國産) 분비나무와 구상나무의 형질분석(形質分析)과 종간유연관계(種間類緣關係))

  • Chang, Chin-Sung;Jeon, Jeong Ill;Hyun, Jung Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.378-390
    • /
    • 1997
  • Ten total populations of Korean fir (Abies koreana Wilson) and Manshurian fir [A. nephrolepis (Traut.) Maxim.] were sampled from south Korea to investigate patterns of intraspecific variation in these species and to evaluate a recognition of the two species. Principal components analysis and cluster analysis were performed both on seed-cone data and on needle morphology data. The characters that contributed most to the separation between A. koreana and A. nephrolepis along three principal components axis were leaf width, length of seed, width of seed wing, length of seed wing, cone width, width of scale, and length of bract tip, but these characters were not diagnostic because of overlap in reality. Therefore, all these characters were not reliable in distinguishing these two taxa including bract position (exerted and recurved vs. exerted and straight). The individuals of A. koreana from Mt. Chi-ri appeared quite unique probably on account of its larger cone size and longer scale tip, while those from Mt. Hal-la of A. koreana were generally distinct from others in terms of their larger seed and seed wing and longer scale width. The Mt. Duk-yu specimens of A. korecana appeared somewhat smaller but more data were needed due to the small sampling size. Generally, the gradual clinal geographic trends made evident by the position of resin ducts in leaves of A. koreana can be detected. The southern populations, Mt. Hal-la (an insular population) were generally distinct from the northern populations (Mt. Chi-ri, Mt. Ga-ya and Mt. Duk-yu) in terms of their position of resin duct (medial, within mesophyll vs marginal, close to epidermis : 100% vs 75 or 50%). Although no sharp boundary separating these two species could be detected based on cone and needle morphology, the observed clinal pattern was distinct in northern populations of A. koreana and southern population of A. nephrnlepis. In a preceding study of the flavonoids variation of 20 species in eastern Asia, flavanone (5-deoxyflavanone) was found to be characteristic of A. faxoniana Rehder et Wilson, A. georgei Orr of China and A. koreana of Korea. A. faxoniana, which is assumed to be primitive species, has position of resin duct relative to both the medial and the marginal, while A. georgei and A. koreana are identified by marginal position of resin duct. With respect of foliar flavonoids chemistry, A. koreana was distinct from A. nephrolepis : the southmost samples (Mt. Hal-la and Mt. Chi-ri) contained additional flavonoids derivatives (mainly flavanone) that were not found in the northmost samples of A. nephrolepis except a few individuals from Mts. Seo-rak and Tae-bak populations of Kwang-won province. The presence of A. koreana type flavonoids in two Chinese species suggested that position of resin duct may be a phyletic character. Abies koreana including two Chinese taxa, exhibited the most elaborate and specialized flavonoids profile within the Abies in eastern Asia. Contrary to our initial expectations, the apparent intermediates between A. nephrolepis and A. koreana in Duk-yu and Ga-ya mountains were found. The pattern of variation on position of resin duct and flavonoids chemistry in these populations of A. kareana suggested that genetic interchange or natural hybridization had occurred between these two species. The evidence needed to resolve the status of this taxon is still inconclusive in our opinion until intermediate individuals from Mts. Duk-yu and Ga-ya show indication of hybridization between the two species.

  • PDF

Disturbance in seedling development of Korean fir (Abies koreana Wilson) tree species on higher altitude forests of Mt. Hallasan National Park, the central part of Jeju Island, Korea

  • Kim, Eun-Shik;Lee, Jong-Won;Choi, Im-Joon;Lim, Wontaek;Choi, Junghwan;Oh, Choong Hyeon;Lee, Sung-Hoon;Kim, Young-Sun
    • Journal of Ecology and Environment
    • /
    • v.41 no.6
    • /
    • pp.152-164
    • /
    • 2017
  • Background: Natural regeneration of seedlings as well as saplings of Korean fir has been significantly impacted by the browsing from the early stages of their development, potentially, by roe deer for the last two to three decades at the study site since late 1980s. This study was carried out to investigate current status of the disturbance in the seedling development of Korean fir (Abies koreana) on Mt. Hallasan, Jeju Island, Korea. Methods: Field survey was carried out during June and August in 2016 to measure the characteristics of study site and understory vegetation by applying systematic sampling to 125 plots of $5m{\times}5m$ quadrat located on eastern slope of the mountain. Correlation and regression analyses were applied to the variables quantified from the data sets using the SAS software. Results: No saplings with their diameters at breast heights smaller than 5.0 cm were found at the study site indicating the serious disturbance in the natural regeneration of Korean fir at the study site. No seedlings with their heights taller than 36.0 cm were found at the study site indicating even more serious disturbance during earlier stage of the natural regeneration of Korean fir at the study site. A total of 616 individuals of the seedlings of Korean fir were found at 54 out of 125 sampling plots. One hundred thirty-eight seedlings (22.4%) out of 616 individual seedlings have the vestiges for being grazed, potentially, by roe deer. Conclusions: Due considerations should be given to the effects of browsing of the seedlings by roe deer to promote the natural regeneration of Korean fir, ultimately to restore Korean fir. It is needed for the managers of the forest to install fences around the forest area. Exclosure experiments as well as enclosure experiments of different densities of browsing should be carried out. In addition, treatment with different densities of Jeju dwarf bamboo should also be included in the experiment on Mt. Hallasan National Park, Jeju Island, Korea.