• Title/Summary/Keyword: Korean bamboo species

Search Result 106, Processing Time 0.024 seconds

Properties of Gul Jeotgal (Oyster Jeotgal) Prepared with Different Types of Salt and Bacillus subtilis JS2 as Starter

  • Kim, Jeong A;Yao, Zhuang;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Gul (oyster) jeotgals (GJs) were prepared using different types of salt (23%, w/v): purified salt, solar salt aged for 3 years, and bamboo salt crystalized 3 times. One set of GJs was fermented with Bacillus subtilis JS2 ($10^6CFU/g$), while the other GJ set was fermented without starter. During fermentation for 24 weeks at $15^{\circ}C$, the starter GJs showed 10-fold higher bacilli counts than the no-starter GJs, where the maximum bacilli count was $8{\times}10^3CFU/g$. All 28 bacilli strains isolated from the 6-week GJs were identified as B. subtilis by using a RAPD-PCR, indicating that some of the B. subtilis JS2 cells remained viable. Lactic acid bacteria (LAB) and yeasts were present at low levels, $10^1-10^2CFU/g$. LAB with protease activities isolated from 10-week samples were identified as Enterococcus species. The isolates obtained at 16 weeks were all Staphylococcus species. The GJs with bamboo salt showed higher pH and lower titratable acidity (TA) values than the other GJs due to the strong alkalinity of bamboo salt. The amino-type nitrogen in the GJs increased slowly during the fermentation. At 24 weeks, the GJs with purified salt showed the highest amino-type nitrogen (412-430 mg%), followed by the GJs with solar salt (397-406 mg%) and GJs with bamboo salt (264-276 mg%). Meanwhile, the GJs with bamboo salt showed the highest ammonia-type N (63.67 mg%), followed by the GJs with purified salt (49 mg%) and solar salt (48 mg%).

Anatomical and Physical Properties of Indonesian Bamboos Carbonized at Different Temperatures

  • Park, Se-Hwi;Jang, Jae-Hyuk;Wistara, Nyoman J;Hidayat, Wahyu;Lee, Min;Febrianto, Fauzi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.656-669
    • /
    • 2018
  • Tropical bamboo species, which have a very rapid growth rate, are considered as a promising non-timber forest product capable of exhibiting new functionality by carbonization technology. This study was conducted to compare the characteristics of carbonized bamboos from Andong (G. pseuudoarundinacea (Steudel) Widjaja), Hitam (G. atrovialacea), Tali (G. apus), Kuning (B. vulgaris Var. striata (Lodd. Ex Lindl)), and Ampel (B. vulgaris Scharad. ex Wendland), and Betung (D. asper). Each bamboo was carbonized at 200, 400, 600, 800, and $1,000^{\circ}C$, respectively, and their physical and anatomical characteristics were investigated. The result showed that the volume and weight of carbonized bamboo decreased with increasing carbonization temperature and showed the substantial changes of volume and weight between 200 and $400^{\circ}C$. The highest and the lowest density of carbonized samples were found in Ampel bamboo and Betung bamboo, respectively. The density of all carbonized bamboos tended to decrease after carbonization at 200 and $400^{\circ}C$ and relatively become constant afterwards. The carbonized bamboo prepared at 800 and $1,000^{\circ}C$ showed better refining degree. The results of the anatomical observation showed that the vascular diameter of carbonized bamboo decreased with increasing carbonization temperature, and the shrinkage in radial and tangential direction showed similar tendency. Statistical analysis showed that there was significant correlation between physical contraction and anatomical contraction. Based on the results of this study, comprehensive data about Indonesian bamboo charcoals could be obtained and it will be useful for future application studies.

Ecology of Azotobacter in Bamboo Forest Soil (죽림토양의 azotobacter 생태)

  • 최영길
    • Korean Journal of Microbiology
    • /
    • v.13 no.1
    • /
    • pp.1-23
    • /
    • 1975
  • This experiment was designed to elucidate the environmental factors in rhizosphers of bamboo forest that affect the distribution and the population size of Azotobacter, and also to estimate the annual productivities of nitrogen fixed by Azotobacter species. The results of this experiment can be summarized as follows ; The rhizosphere of bamboo forest contained high free sugars as of 3-8 times more than non-rhizosphere (Bacon, 1968), and the contents of organic matter and amino acids of that are reltively higher than this. Because of high content of potassium, average of soil pH is near at 7.0. As above-mentioned enviromental factors, the population sizes of Actinomycetes, general fungi, general bacteria and Azotobacters are larger than those of non-rhizosphere and the ofllowings are general fungi and general bacteria by turns. Azotobacter is dependent upon the antagonistic Actinomycetes. The main carbon source for Azotobacter in nitrogn flxation at the rhizosphere was glucose and minors were fructose, maltose and sucrose by turns. Annual gains of nitrogen by Azotobacters in soil of bamboo forest within 10cm from surface are estimated as of 88.94 kg/ha at site A, 60.4kg/ha at site B and 67.38kg/ha at site C, respectively.

  • PDF

Reactive Oxygen Species and Cytotoxicity of Bamboo (Phyllostachys pubescens) Sap (대나무수액의 활성산소 소거활성과 세포독성)

  • Cho, Sook-Hyun;Choi, Yong-Jo;Rho, Chi-Woong;Choi, Chul-Yung;Kim, Deok-Song;Cho, Sung-Hwan
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.105-110
    • /
    • 2008
  • The antioxidant properties of bamboos sap isolated from Phyllostachys pubescens were investigated. This product scavenged intracellular reactive oxygen species (ROS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and prevented lipid peroxidation. The radical scavenging activity of bamboo sap protected the viability of peritoneal macrophage cells exposed to hydrogen peroxide $(H_2O_2)$, Furthermore, bamboo sap reduced apoptotic cell formation induced by $H_2O_2$ as demonstrated by decreases in the number of hypo-diploid cells am apoptotic cell body formation. These results indicate that bamboo sap has radical scavenging activity and ameliorates $H_2O_2$ induced cytotoxicity.

Characteristics of Bamboo Vinegars Obtained from Three Types of Carbonization Kiln (3종류의 탄화로에서 얻어진 죽초액의 특성)

  • Ku, Chang-Sub;Mun, Sung-Phil;Park, Sang-Bum;Kwon, Su-Duk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.87-95
    • /
    • 2002
  • Three different species of green and air-dried Korean bamboos were carbonized by using three different types of kilns designated as special (800~1000℃), improved (600~700℃) and simple kiln (400~500℃), and the bamboo vinegars obtained from the carbonization processes were characterized. In the case of the special kiln, most of the bamboo vinegars obtained at the first recovery stage showed high values of specific gravity and also in content of organic acid and water-soluble tar. The bamboo vinegars obtained from the improved kiln showed various physical properties depending on their species. In the case of simple kiln, the bamboo vinegars obtained from air-dried bamboos and at temperatures below 80℃, showed a higher specific gravity and more water-soluble tar as well as total organic components than those obtained at 80~150℃. A good linear relationship (correlation coefficient of ca. 0.90) was obtained between the specific gravities and the sum of organic acids and water-soluble tars. Therefore, this correlation coefficient might be a good index to determine the quality of bamboo vinegars. The major chemical constituents of the bamboo vinegars were acetic acid and considerable amounts of phenols: guaiacol, ethyl guaiacol, syringol, and methyl syringol.

Nutrient Concentration and Stoichiometry in Plant Organs of Four Warm-temperate Forests in Southern Korea

  • Choonsig Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.66-72
    • /
    • 2024
  • Determining the nutrient stoichiometry in plant organs is critical for understanding nutrient uptake and cycling in forest ecosystems. This study evaluated nutrient concentrations and stoichiometry in various plant organs (stem, bark, branches, and foliage) of species found in four warm-temperate forests in southern Korea. Cryptomeria japonica D. Don (CJ), Quercus serrata Thunb. (QS), evergreen broadleaved tree species (EB), and bamboo spp. (BB) were destructively sampled to measure nutrient (C, N, and P) concentrations in the plant organs. The mean C concentration in the stem was significantly higher in CJ than in QS, BB, or EB, whereas the C concentration in the foliage was the lowest in BB. The mean foliar N and P concentrations were higher in BB than in EB or CJ. The mean stem C:N and C:P ratios were highest in CJ but were lowest in the foliage of BB. Overall, stems of all species showed a strong positive correlation between C concentration and dry weight, but a negative correlation between N and dry weight. The N and P concentrations of foliage and bark were strongly correlated, whereas those of the stem and branches were poorly correlated. Positive correlations were detected between the C:N and C:P ratios in bark and foliage. These results indicate the existence of intraspecific differences in nutrient requirements in warm-temperate forest species and add to the understanding of nutrient uptake and storage patterns in the organs of species growing in warm-temperate forests.

Fungal Flora in Bamboo Forests of Korea(II) (한국(韓國) 죽림산(竹林産) 고등(高等) 균류(菌類)(II))

  • Cho, Duck-Hyun;Lee, Ji-Yul
    • The Korean Journal of Mycology
    • /
    • v.8 no.1
    • /
    • pp.29-32
    • /
    • 1980
  • More than 100 of higher fungi were collected and identified at the bamboo forest of Damyang, Chonlanam-Do, during July to October, 1979. They include two classes, four oders, 13 families, 21 genera and 25 species. Among them, Leucocoprinus otsuensis Hongo, Lepiota atros­quamulosa Hongo and Rhodophyllus mycenoides Hongo were found to be new in Korea.

  • PDF

A Morphological Study of Bamboos by Vascular Bundle Sheath (대나무류(類)의 유관속초(維管束鞘)에 의(依)한 형태학적(形態學的) 연구(硏究))

  • Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.25 no.1
    • /
    • pp.13-47
    • /
    • 1975
  • Among the many species of bamboo, it is well known that the dwarf-type is widely distributed in the tropical regions, and the slender type in temperated zone. In the temperated zone the trees have extensively differentiated into one hundred species in 50 genera. In many oriental countries, the bamboo wood is being used as a material for construction and for the manufacture of technical instruments. The bamboo shoot is also regarded as a good and delicious edible resource. Moreover, recent medical investigation verifies that the sap of certain species of the bamboo is an antibiotic effect against cancer. Fortunately, it is very easy to propagate the bamboo trees by using cutting from southeastern Asian countries. This important resource can further be used as a significant source of pulp, which is becoming increasingly important. The classification system of this significant resource has not been completely established to date, even though its importance has been emphasized. Initiated by Canlevon Linne in the 18th century, a classification method concerning the morphological characteristics of flowers was the first step in developing a classification. But it was not an easy task to accomplish, because this type of classification system is based on the sexual organs in bamboo trees. Because the bamboo has a long life cycle of 60-120 years and classification according to this method was very difficult as the materials for the classification are not abundant and some species have changed, even though many references related to the morphological classification of bamboo trees are available nowadays. So, the certification of bamboo trees according to the morphological classification system is not reasonable for us. Consequently, the classification system of bamboo trees on the basis of endomorphological characteristics was initiated by Chinese-born Liese. And classification method based on the morphological characteristics of the vascular bundle was developed by Grosser. These classification methods are fundamentally related to Holltum's classification method, which stressed the morphology of the ovary. The author investigated to re-establish a new classification method based on the vascular sheath. Twenty-six species in 11 genera which originated from Formosa where used in the study. The results obtained from the investigation were somewhat coordinated with those of Crosser. Many difficulties were found in distinguishing the species of Bambusa and Dendrocalamus. These two species were critically differentiated under the new classification system, which is based on the existence of a separated vascular bundle sheath in the bamboo. According to these results, it is recommended that Babusa divided into two groups by placing it into either subspecies or the lower categories. This recommendation is supported by the observation that the evolutional pattern of the bamboo thunk which is from outward to inward. It is also supported by the viewpoint that the fundamental hypothesis in evolution is from simple to complex. There remained many problems to be solved through more critical examination by comparing the results to those of the classification based on the sexual organs method. The author observed the figure of the cross-sectional area of vascular trunk of bamboo tree and compared the results with those of Grosser and Liese, i.e. A, $B_1$, $B_2$, C, and D groups in classification. Group A and $B_2$ were in accordance with the results of those scholars, while group D showed many differences, Grosser and Liese divided bamboo into "g" type and "h" type according to the vascular bundle type; and they included Dendrocalamus and Bambusa in Group D without considering the type of vascular bundle sheath. However, the results obtained by the author showed that Dendrocalamus and Bambusa are differentiated from each other. By considering another group, "i" identified according to the existence of separated vascular bundle sheath. Bambusa showed to have a separated vascular bundle sheath while Dendrocalamus does not have a separated vascular bundle sheath. Moreover, Bambusa showed peculiar characteristics in the figure of vascular development, i.e., one with an inward vascular bundle sheath and the other with a bivascular bundle sheath (inward and outward). In conclusion, the bamboo species used in this experiment were classified in group D, without any separated vascular bundle sheath, and in group E, with a vascular bundle sheath. Group E was divided into two groups, i.e., and group $E_1$, with bivascular sheath, and group $E_2$, with only an inward vascular sheath. Therefore, the Bambusa in group D as described by Grosser and Liese was included in group E. Dendrocalamus seemed to be the middle group between group $E_l$ and group $E_2$ under this classification system which is summarized as follows: Phyllostachys-type: Group A - Phyllostachys, Chymonobambus, Arundinaria, Pseudosasa, Pleioblastus, Yashania Pome-type: Group $B_2$ - Schizostachyum, Melocanna Hemp-type: Group D - Dendrocalamu Bambu-type: Group $E_1$ - Bambusa ghi.

  • PDF

Tachioside, an Antioxidative Phenolic Glycoside from Bamboo Species

  • Li, Ting;Park, Min-Hee;Kim, Mi-Jeong;Ryu, Bog-Mi;Kim, Myo-Jung;Moon, Gap-Soon
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1376-1378
    • /
    • 2008
  • Tachioside (4-hydroxy-3-methoxy-phenyl-1-O-glucoside), a known phenolic glycoside, was isolated from various bamboo species. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and Trolox equivalent antioxidant capacity determined a significant antioxidant activity of tachioside which was comparable to L-ascorbic acid. Each culm and leaf extracts were tested and the culm of Phyllostachys bambusoides appeared to contain the highest amount of tachioside.

Microbial Communities and Physicochemical Properties of Myeolchi Jeotgal (Anchovy Jeotgal) Prepared with Different Types of Salts

  • Shim, Jae Min;Lee, Kang Wook;Yao, Zhuang;Kim, Jeong A;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1744-1752
    • /
    • 2017
  • Myeolchi jeotgals (MJs) were prepared with purified salt (PS), solar salt aged for 1 year (SS), and bamboo salt (BS) melted 3 times at 10% and 20% (w/w) concentrations, and fermented for 28 weeks at $15^{\circ}C$. BS MJ showed higher pH and lower titratable acidities than the other samples because of the alkalinity of bamboo salt. Lactic acid bacteria counts increased until 4-6 weeks and then decreased gradually, and were not detected after 20 weeks from MJs with 10% salt. Yeast counts of PS MJs were higher than those of BS and SS MJs. Bacilli were detected in relatively higher numbers throughout the 28 weeks, like marine bacteria, but archae were detected in lower numbers during the first 10 weeks. When 16S rRNA genes were amplified from total DNA from PS MJ (10% salt) at 12 weeks, Tetragenococcus halophilus was the major species. However, Staphylococcus epidermidis was the dominant species for BS MJ at the same time point. In SS MJ, T. halophilus was the dominant species and S. epidermidis was the next dominant species. BS and SS MJs showed higher amino-type nitrogen, ammonia-type nitrogen, and volatile basic nitrogen contents than PS MJs. SS and BS were better than PS for the production of high-quality MJs.