• Title/Summary/Keyword: Korean Panel on Climate Change

Search Result 151, Processing Time 0.025 seconds

Analysis on the Relationship Between Climatic Variation and Total Factor Productivity of Manufacture Industries of Korea (한국 기후변동 패턴과 제조업 총요소생산성의 관계 분석)

  • Choi, Young Jun;Park, Hyun Yong
    • Environmental and Resource Economics Review
    • /
    • v.25 no.2
    • /
    • pp.277-297
    • /
    • 2016
  • This study is to analyze the effects of changing pattern of climate vaariables on total factor productivity of Korea manufacture industry. Changes in temperature, rainfalls and humidity which are the representative climate variables are used as main factors. Not only average values of the variables but those highest values are used as independent variables in the model, in order to consider the characteristic pattern of recent climate change, the high volatilities. The OLS results are unlike to previous literature that temperature and humidity had no significant impact on manufacturing productivity. An increase in the amount of precipitation was analyzed that impact negatively impacted. The analysis of panel data showed that temperatures and precipitation all that does not significantly affect the manufacturing. While the increase of the average humidity is shown to increase the total productivity of manufacture industry. In Korea, adaptation capability is important in determining the effects of climate change on productivity of manufacture industry.

Assessment of the Potential Impact of Climate Change on the Drought in Agricultural Reservoirs under SSP Scenarios (SSP 시나리오를 고려한 농업용 저수지의 이수측면 잠재영향평가)

  • Kim, Siho;Jang, Min-Won;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.35-52
    • /
    • 2024
  • This study conducted an assessment of potential impacts on the drought in agricultural reservoirs using the recently proposed SSP (Shared Socioeconomic Pathways) scenarios by IPCC (Intergovernmental Panel on Climate Change). This study assesses the potential impact of climate change on agricultural water resources and infrastructure vulnerability within Gyeongsangnam-do, focusing on 15 agricultural reservoirs. The assessment was based on the KRC (Korea Rural Community Corporation) 1st vulnerability assessment methodology using RCP scenarios for 2021. However, there are limitations due to the necessity for climate impact assessments based on the latest climate information and the uncertainties associated with using a single scenario from national standard scenarios. Therefore, we applied the 13 GCM (General Circulation Model) outputs based on the newly introduced SSP scenarios. Furthermore, due to difficulties in data acquisiton, we reassessed potential impacts by redistributing weights for proxy variables. As a main result, with lower future potential impacts observed in areas with higher precipitation along the southern coast. Overall, the potential impacts increased for all reservoirs as we moved into the future, maintaining their relative rankings, yet showing no significant variability in the far future. Although the overall pattern of potential impacts aligns with previous evaluations, reevaluation under similar conditions with different spatial resolutions emphasizes the critical role of meteorological data spatial resolution in assessments. The results of this study are expected to improve the credibility and accuracy formulation of vulnerability employing more scientific predictions.

Analysis of Climate Change Researches Related to Water Resources in the Korean Peninsula (한반도 수자원분야 기후변화 연구동향 분석)

  • Lee, Jae-Kyoung;Kim, Young-Oh;Kang, Noel
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.71-88
    • /
    • 2012
  • The global warming is probably the most significant issue of concern all over the world and according to the report published by the Intergovernmental Panel on Climate Change (IPCC), the average temperature and extent of global warming around the globe have been on the rise and so have the uncertainty for the future. Such effects of global warming have adverse effects on basic foundation of the mankind in numerous ways and water resource is no exception. The researches on water resources assessment for climate change are significant enough to be used as the preliminary data for researches in other fields. In this research, a total of 124 peer-reviewed publications and 57 reports on the subject of research on climate change related to water resources, that has been carried out so far in Korea has been reviewed. The research on climate change in Korea (inclusive of the peer-reviewed articles and reports) has mainly focused on the future projection and assessment. In the fields of hydrometeorology tendency and projection, the analysis has been carried out with focus on surface water, flood, etc. for hydrological variables and precipitation, temperature, etc. for meteorological variables. This can be attributed to the large, seasonal deviation in the amount of rainfall and the difficulty of water resources management, which is why, the analysis and research have been carried out with focus on those variables such as precipitation, temperature, surface water, flood, etc. which are directly related to water resources. The future projection of water resources in Korea may differ from region to region; however, variables such as precipitation, temperature, surface water, etc. have shown a tendency for increase; especially, it has been shown that whereas the number of casualties due to flood or drought decreases, property damage has been shown to increase. Despite the fact that the intensity of rainfall, temperature, and discharge amount are anticipated to rise, appropriate measures to address such vulnerabilities in water resources or management of drainage area of future water resources have not been implemented as yet. Moreover, it has been found that the research results on climate change that have been carried out by different bodies in Korea diverge significantly, which goes to show that many inherent uncertainties exist in the various stage of researches. Regarding the strategy in response to climate change, the voluntary response by an individual or a corporate entity has been found to be inadequate owing to the low level of awareness by the citizens and the weak social infrastructure for responding to climate change. Further, legal or systematic measures such as the governmental campaign on the awareness of climate change or the policy to offer incentives for voluntary reduction of greenhouse gas emissions have been found to be insufficient. Lastly, there has been no case of any research whatsoever on the anticipated effects on the economy brought about by climate change, however, there are a few cases of on-going researches. In order to establish the strategy to prepare for and respond to the anticipated lack of water resources resulting from climate change, there is no doubt that a standardized analysis on the effects on the economy should be carried out first and foremost.

A Study on the Estimation of Greenhouse Gas Using Oyster Shell Recycling for Paper Filler

  • Park, Seung-Chel;Seo, Ran-Sug;Kim, Sung-Hu
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • This study has conducted greenhouse gas emission reduction test as using Oyster-shells originated PCC paper filler compare to non-Oyster shells used PCC. This examination was estimated and calculated in accordance with both IPCC (Intergovernmental Panel on Climate Change) and World Business Council for Sustainable Development (WBSCD). The greenhouse gas emission reduction estimation result indicates that, when oyster shells are recycled and used as paper filler, it reduces $27.97tCO_2\;per\;100\;ton$ of oyster shells. It is greenhouse gas emission $44.27tCO_2$ from PCC production changed to carbon emission reduction when replaced with oyster shell. LNG greenhouse gas emission $16.3tCO_2$ in relation to the pre-treatment with oyster shell per 100 ton is also reflected. As a result, it is assumed that roughly $0.2797tCO_2/oyster\;shell{\cdot}ton$.

Some Thoughts on LCCO2 of the Railway Track System (철도 궤도시스템의 LCCO2에 관한 소고)

  • Minnu, Tian;Lee, Woo-Chul;Choi, Sang-Hyun;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.548-551
    • /
    • 2009
  • The report of the intergovernment panel on climate change(IPCC) concluded that the global warning due to Green-house Gas(GHGs) will be accelerated in the 21th century. The railroad construction sector consumes a great deal of natural resources and energy in construction. maintenance, and demolition stage. In order to establish and perform reducing plan of GHGs of railway track system for effective corresponding the Climate Change Agreement, the evaluation method of the lifecycle CO2 emission if needed. In this research, it was investigates that the research trend for the LCCO2 and the method to estimate the lifecycle carbon dioxide emission amount of the railway track system as quantitative.

  • PDF

A Comparison of the Changes of Greenhouse Gas Emissions to the Develop Country-Specific Emission Factors and Scaling Factors in Agricultural Sector (농업부문 국가 고유 배출계수와 보정계수 개발에 따른 온실가스 배출량 변화 비교)

  • Jeong, Hyun Cheol;Lee, Jong Sik;Choi, Eun Jung;Kim, Gun Yeob;Seo, Sang Uk;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.349-357
    • /
    • 2014
  • Greenhouse gases (GHGs) from agricultural sector were categorized in a guideline book from Intergovernmental Panel on Climate Change (IPCC) as methane from rice paddy fields and nitrous oxide from agricultural soils. In general, GHG emissions were calculated by multiplying the activity data by emission factor. Tier 1 methodology uses IPCC default factors and Tier 2 uses country specific emission factors (CS). The CS and Scaling factors (SF) had been developed by NAAS (National Academy of Agricultural Science) projects from 2009 to 2012 to estimate how the advanced emissions. The purpose of this study was to compare GHG emissions calculated from IPCC default factors and NAAS CS and SF of agricultural sector in Korea. Methane emissions using CS and SF in rice paddy field was about 79% higher than those using IPCC default factors. In the agricultural soils, nitrous oxide emissions using CS from the 5 crops were about 40% lower than those using IPCC default. Except those 5 crops, approximately up to 52% lower emissions were calculated using CS compared to those using IPCC default factors. The total GHG emissions using CS and SF were about 33% higher than those using Tier 1 method by IPCC default factors.

Changes in Potential Distribution of Pinus rigida Caused by Climate Changes in Korea (기후변화에 따른 리기다소나무림의 잠재 생육적지 분포 변화 예측)

  • Kim, Yong-Kyung;Lee, Woo-Kyun;Kim, Young-Hwan;Oh, Suhyun;Heo, Jun-Hyeok
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.509-516
    • /
    • 2012
  • In this research, it was intended to examine the vulnerability of Pinus rigida to climate changes, a major planting species in Korea. For this purpose, the distribution of Pinus rigida and its changes caused by climate changes were estimated based on the 'A1B' climate change scenario suggested by IPCC. Current distribution of Pinus rigida was analyzed by using the $4^{th}$Forest Type Map and its potential distribution in the recent year (2000), the near future (2050) and the further future (2100) were estimated by analyzing the optimized ranges of three climate indices - warmth index(WI), minimum temperature index of the coldest month (MTCI) and precipitation effectiveness index(PEI). The results showed that the estimated potential distribution of Pinus rigida declines to 56% in the near future(2050) and 15% in the further future (2100). This significant decline was found in most provinces in Korea. However, in Kangwon province where the average elevation is higher than other provinces, the area of potential distribution of Pinus rigida increases in the near future and the further future. Also the result indicated that the potential distribution of Pinus rigida migrates to higher elevation. The potential distributions estimated in this research have relatively high accuracy with consideration of classification accuracy (44.75%) and prediction probability (62.56%).

Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT (SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가)

  • Park, Min Ji;Shin, Hyung Jin;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.337-346
    • /
    • 2010
  • Climate change has a huge impact on various parts of the world. This study quantified and analyzed the effects on hydrological behavior caused by climate, vegetation canopy and land use change of Soyanggang dam watershed (2,694.4 $km^2$) using the semi-distributed model SWAT (Soil Water Assessment Tool). For the 1997-2006 daily dam inflow data, the model was calibrated with the Nash-Sutcliffe model efficiencies between the range of 0.45 and 0.91. For the future climate change projection, three GCMs of MIROC3.2hires, ECHAM5-OM, and HadCM3 were used. The A2, A1B and B1 emission scenarios of IPCC (Intergovernmental Panel on Climate Change) were adopted. The data was corrected for each bias and downscaled by Change Factor (CF) method using 30 years (1977-2006, baseline period) weather data and 20C3M (20th Century Climate Coupled Model). Three periods of data; 2010-2039 (2020s), 2040-2069 (2050s), 2070-2099 (2080s) were prepared for future evaluation. The future annual temperature and precipitation were predicted to change from +2.0 to $+6.3^{\circ}C$ and from -20.4 to 32.3% respectively. Seasonal temperature change increased in all scenarios except for winter period of HadCM3. The precipitation of winter and spring increased while it decreased for summer and fall for all GCMs. Future land use and vegetation canopy condition were predicted by CA-Markov technique and MODIS LAI versus temperature regression respectively. The future hydrological evaluation showed that the annual evapotranspiration increases up to 30.1%, and the groundwater recharge and soil moisture decreases up to 55.4% and 32.4% respectively compared to 2000 condition. Dam inflow was predicted to change from -38.6 to 29.5%. For all scenarios, the fall dam inflow, soil moisture and groundwater recharge were predicted to decrease. The seasonal vapotranspiration was predicted to increase up to 64.2% for all seasons except for HadCM3 winter.

Vulnerability Assessment of Maize and Wheat Production to Temperature Change - In Case of USA and China - (기온변화에 대한 옥수수와 밀 생산량 취약성 평가 - 미국과 중국을 사례로 -)

  • Song, Yongho;Lee, Woo-Kyun;Kwak, Hanbin;Kim, Moonil;Yang, Seung-Ryong
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.371-384
    • /
    • 2013
  • The appearance of abnormal weather caused by climate change have both direct and indirect impact on the society. Especially, agriculture is brought up as a socially important interest having direct impact of climate change in growth and harvest of crops. This study aims to perform vulnerability assessment for the South Korea's two main imported grains, maize and wheat. The production vulnerability assessment of maize and wheat in USA and China to temperature variability, which has a great impact in production, is performed. First, grain cultivation period which affects productivity of main grain production country was selected based on the main cultivation period from several references and previous studies. Then, Intergovernmental Panel on Climate Change AR5 greenhouse gas scenario RCP(representative concentration pathways)8.5 scenarios was used to select the future climate that correspond to the cultivation period of maize and wheat for each producing country. According to the result of production vulnerability analysis using adaptation (temperature changing trend) and sensitivity(temperature variability), the productivity of wheat was higher in USA, while productivity of maize was higher in China. In the future, the result showed that productivity of all two grains will be favorable in USA. The result of production vulnerability assessment through this study can later be used as a preparation data for the coming fluctuation in grain price due to climate change.

Climate Change-induced High Temperature Stress on Global Crop Production (기후변화로 인한 작물의 고온 스트레스 전망)

  • Lee, Kyoungmi;Kang, Hyun-Suk;Cho, ChunHo
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.5
    • /
    • pp.633-649
    • /
    • 2016
  • Exposure to high temperatures during the reproductive period of crops decreases their productivity. The Intergovernmental Panel on Climate Change's (IPCC) fifth Assessment Report predicts that the frequency of high temperatures will continue to increase in the future, resulting in significant impacts on the world's food supply. This study evaluate climate change-induced heat stress on four major agricultural crops (rice, maize, soybean, and wheat) at a global level, using the coupled atmosphere-ocean model of Hadley Centre Global Environmental Model version 2 (HadGEM2-AO) and FAO/IIASA Global Agro-Ecological Zone (GAEZ) model data. The maximum temperature rise ($1.8-3.5^{\circ}C$) during the thermal-sensitive period (TSP) from the baseline (1961-1990) to the future (2070-2090) is expected to be larger under a Representative Concentration Pathway (RCP) 8.5 climate scenario than under a RCP2.6 climate scenario, with substantial heat stress-related damage to productivity. In particular, heat stress is expected to cause severe damage to crop production regions located between 30 and $50^{\circ}N$ in the Northern Hemisphere. According to the RCP8.5 scenario, approximately 20% of the total cultivation area for all crops will experience unprecedented, extreme heat stress in the future. Adverse effects on the productivity of rice and soybean are expected to be particularly severe in North America. In Korea, grain demands are heavily dependent on imports, with the share of imports from the U.S. at a particularly high level today. Hence, it is necessary to conduct continuous prediction on food security level following the climate change, as well as to develop adaptation strategy and proper agricultural policy.

  • PDF