• Title/Summary/Keyword: Korean Citrus

Search Result 1,090, Processing Time 0.028 seconds

Hesperetin suppresses LPS/high glucose-induced inflammatory responses via TLR/MyD88/NF-κB signaling pathways in THP-1 cells

  • Lee, Aeri;Gu, HyunJi;Gwon, Min-Hee;Yun, Jung-Mi
    • Nutrition Research and Practice
    • /
    • v.15 no.5
    • /
    • pp.591-603
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Unregulated inflammatory responses caused by hyperglycemia may induce diabetes complications. Hesperetin, a bioflavonoid, is a glycoside in citrus fruits and is known to have antioxidant and anticarcinogenic properties. However, the effect of inflammation on the diabetic environment has not been reported to date. In this study, we investigated the effect of hesperetin on proinflammatory cytokine secretion and its underlying mechanistic regulation in THP-1 macrophages with co-treatment LPS and hyperglycemic conditions. MATERIALS/METHODS: THP-1 cells differentiated by PMA (1 µM) were cultured for 48 h in the presence or absence of hesperetin under normoglycemic (5.5 mM/L glucose) or hyperglycemic (25 mM/L glucose) conditions and then treated with LPS (100 ng/mL) for 6 h before harvesting. Inflammation-related proteins and mRNA levels were evaluated by enzyme-linked immunosorbent assay, western blot, and quantitative polymerase chain reaction analyses. RESULTS: Hesperetin (0-100 µM, 48 h) treatment did not affect cell viability. The tumor necrosis factor-α and interleukin-6 levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions, and these increases were decreased by hesperetin treatment. The TLR2/4 and MyD88 activity levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions; however, hesperetin treatment inhibited the TLR2/4 and MyD88 activity increases. In addition, nuclear factor-κB (NF-κB) and Acetyl-NF-κB levels increased in response to treatment with LPS under hyperglycemic conditions compared to normoglycemic conditions, but those levels were decreased when treated with hesperetin. SIRT3 and SIRT6 expressions were increased by hesperetin treatment. CONCLUSIONS: Our results suggest that hesperetin may be a potential agent for suppressing inflammation in diabetes.

Effective Medicinal Plants in the Treatment of the Cyclic Mastalgia (Breast Pain): A Review

  • Niazi, Azin;Rahimi, Vafa Baradaran;Hatami, Hooman;Shirazinia, Reza;Esmailzadeh-dizaji, Reza;Askari, Nafiseh;Askari, Vahid Reza
    • Journal of Pharmacopuncture
    • /
    • v.22 no.3
    • /
    • pp.131-139
    • /
    • 2019
  • Introduction: Mastalgia is the most common benign breast disorder during the fertility period of women. So far a wide range of natural or complementary medicines is used to cure mastalgia. Sanitary organizations need complete and suitable details to help women, for making the proper decision for alternative treatment based on the evidence. The aim of the present study is to introduce medicinal plant-based treatments about mastalgia and summarizes clinical trials about this disorder. Method: The articles were provided using mixture of keywords including cyclic pain, breast, treatment, therapeutics, therapy, clinical trial, herbal, drug, mastalgia and all the probable terms, in national and international databases SID, Iran Medex, Magiran, PubMed, Scopus, Medline, Science direct and Cochrane library, in both Persian and English languages. All cross-sectional and review articles about herbal treatment of mastalgia until 2018 November were studied. Results: Nineteen articles from all of the available articles (45 cases) and a sample size about of (1987 cases) were included in our study. The articles were clinical trials. The results revealed that mastalgia could be healed by Nigella sativa, Vitex agnus-castus, curcumin, Hypericum perforatum, Citrus sinensis, wheat germ, and Ginkgo biloba. Conclusion: Most of the evaluated medicinal plants possessing antioxidant compounds with anti-inflammatory and analgesic properties, exhibited healing effects in the treatment of mastalgia. Thus, medicinal plants can be considered in the treatment of mastalgia; however, further investigations are needed to obtain more details about their probable side effects.

In vitro Study and Clinical Trial of Natural Essential Oils and Extract Against Malassezia Species

  • Lee, Min Young;Na, Eui Young;Yun, Sook Jung;Lee, Seung-Chul;Won, Young Ho;Lee, Jee-Bum
    • Journal of Mycology and Infection
    • /
    • v.23 no.4
    • /
    • pp.91-98
    • /
    • 2018
  • Background: Malassezia, a lipophilic yeast, is a causative agent for dandruff and seborrheic dermatitis. Many biological agents have been studied for anti-Malassezia effect but further studies are needed for their clinical application. Objective: The study was conducted to evaluate the inhibitory effect of different natural essential oils and a fruit extract on Malassezia species in an in vitro study and a clinical trial. Methods: The antifungal effects of natural essential oils and a fruit extract on Malassezia species (M. furfur and M. sympodialis) were evaluated by measuring the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) and using the disc diffusion method. Natural essential oils of citron seed, lavender, and rosemary and citrus junos fruit extract were used for the in vitro study. The clinical trial was conducted with a shampoo containing four ingredients. A total of 22 subjects used the shampoo every day for 4 weeks and were evaluated using clinical photography, trichoscopy, and sebumeter at baseline, 2 weeks, and 4 weeks after treatment. Results: Antifungal activity of agents was relatively lower in lavender and rosemary essential oils at MIC and MFC. Disc diffusion method revealed same results. In the clinical trial, the amount of sebum decreased statistically significantly and erythema, dandruff, and lesion extent also improved. Conclusion: The natural essential oils and fruit extract are effective for suppressing Malassezia activity, therefore these might be used as an alternative for treatment of dandruff and seborrheic dermatitis.

Evaluation of Bacterial Spot Disease of Capsicum annuum L. in Drought Stress Environment by High Temperature (온도변화에 따른 건조 스트레스 환경에서 고추 세균점무늬병 발생 영향)

  • Jang, Jong-Ok;Kim, Byung-Hyuk;Lee, Jung-Bok;Joa, Jae-Ho;Koh, Sangwook
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.62-70
    • /
    • 2019
  • The global warming by increased $CO_2$ will effect of plant pathogenic microorganisms and resistance of host plants, and it is expected to affect host-pathogen interactions. This study used Capsicum annuum L. and Xanthomonas euvesicatoria, a pathogenic bacteria of pepper, to investigate interactions between hosts and pathogens in a complex environment with increasedcultivation temperature and drought stress. As a result, the bacterial spot disease of C. annuum L. caused by X. euvesicatoria was $35^{\circ}C$ higher than $25^{\circ}C$. In addition, the effect on water potential on bacterial spot disease was much greater water potential -150 kPa than -30 kPa. The disease progress and severity higher than water potential -30 kPa. This result will useful for understanding interaction with red pepper and X. euvesicatoria under the complex environment with increased cultivation temperature and in water potential -150 kPa drought stress in the future.

Immunomodulatory Activities of Body Wall Fatty Acids Extracted from Halocynthia aurantium on RAW264.7 Cells

  • Monmai, Chaiwat;Jang, A-Yeong;Kim, Ji-Eun;Lee, Sang-Min;You, SangGuan;Kang, SeokBeom;Lee, Tae Ho;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1927-1936
    • /
    • 2020
  • Tunicates are known to contain biologically active materials and one species in particular, the sea peach (Halocynthia aurantium), has not been thoroughly studied. In this study we aimed to analyze the fatty acids profile of the H. aurantium body wall and its immunomodulatory effects on RAW264.7 macrophage-like cells. The fatty acids were classified into three categories: saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). Omega-3 fatty acid content, including EPA and DHA, was higher than omega-6 fatty acids. H. aurantium body wall fatty acids exhibited enhanced immune response and anti-inflammatory effects on RAW264.7 macrophage-like cells. Under normal conditions, fatty acids significantly increase nitric oxide (NO) and PGE2 production in a dose-dependent manner, thereby improving the immune response. On the other hand, in LPS-treated RAW264.7 cells, fatty acids significantly decreased nitric oxide (NO) and PGE2 production in a dose-dependent manner, thereby enhancing anti-inflammatory effects. Fatty acids transcriptionally control the expression of the immune-associated genes, iNOS, IL-1β, IL-6, COX-2, and TNF-α, via the MAPK and NF-κB signaling cascades in RAW264.7 cells. However, in LPS-stimulated RAW264.7 cells, H. aurantium body wall fatty acids significantly inhibited expression of inflammatory cytokine; similarly, production of COX-2 and PGE2 was inhibited. The results of our present study provide insight into the immune-improving and anti-inflammatory effects of H. aurantium body wall fatty acids on macrophages. In addition, our study demonstrates that H. aurantium body wall is a potential source of immune regulatory components.

Production of Deglucose-ApioseXylosylated Platycosides from Glycosylated Platycosides by Crude Enzyme from Aspergillus tubingensis

  • Shin, Kyung-Chul;Kil, Tae-Geun;Kang, Su-Hwan;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.430-436
    • /
    • 2022
  • Platycosides, Platycodi radix (Platycodon grandiflorus root) saponins, are used as food supplements and exert diverse pharmacological activities. Deglycosylation of saponins enhances their biological efficacy, and deglycosylated platycosides are produced mainly through enzymatic hydrolysis. However, the types of available deglycosylated platycosides remain limited because of a lack of hydrolyzing enzymes that can act on specific glycosides in glycosylated platycosides. In this study, a crude enzyme from Aspergillus tubingensis converted platycoside E (PE) and polygalacin D3 (PGD3) into deglucose-apiose-xylosylated (deGAX)-platycodin D (PD) and deGAX-polygalacin D (PGD), respectively. The products were identified through LC/MS analysis by specifically hydrolyzing all glucose residues at C-3, and apiose and xylose residues at C-28 of platycoside. The hydrolytic activity of the crude enzyme obtained after the cultivation of the fungus using citrus pectin and corn steep solid as carbon and nitrogen sources, respectively, in culture medium was increased compared with those using other carbon and nitrogen sources. The crude enzyme from A. tubingensis was the most effective in producing deGAX platycoside at pH 5.0 and 60℃. The crude enzyme produced 0.32 mg/ml deGAX-PD and 0.34 mg/ml deGAX-PGD from 1 mg/ml PE and 1 mg/ml PGD3 (at pH 5.0 and 60℃) for 12 and 10 h, with productivities of 32.0 and 42.5 mg/l/h and molar yields of 62.1 and 59.6%, respectively. To the best of our knowledge, this is the first study to produce deGAX platycosides from glycosylated platycosides.

A survey of viruses and viroids in astringent persimmon (Diospyros kaki Thunb.) and the development of a one-step multiplex reverse transcription-polymerase chain reaction assay for the identification of pathogens

  • Kwon, Boram;Lee, Hong-Kyu;Yang, Hee-Ji;Kim, So-Yeon;Lee, Da-Som;An, ChanHoon;Kim, Tae-Dong;Park, Chung Youl;Lee, Su-Heon
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.193-206
    • /
    • 2022
  • Astringent persimmon (Diospyros kaki Thunb.) is an important fruit crop in Korea; it possesses significant medicinal potential. However, knowledge regarding the pathogens affecting this crop, particularly, viruses and viroids, is limited. In the present study, reverse transcription-polymerase chain reaction (RT-PCR) and high-throughput transcriptome sequencing (HTS) were used to investigate the viruses and viroids infecting astringent persimmons cultivated in Korea. A one-step multiplex RT-PCR (mRT-PCR) method for the simultaneous detection of the pathogens was developed by designing species-specific primers and selecting the primer pairs via combination and detection limit testing. Seven of the sixteen cultivars tested were found to be infection-free. The RT-PCR and HTS analyses identified two viruses and one viroid in the infected samples (n = 51/100 samples collected from 16 cultivars). The incidence of single infections (n = 39/51) was higher than that of mixed infections (n = 12/51); the infection rate of the Persimmon cryptic virus was the highest (n = 31/39). Comparison of the monoplex and mRT-PCR results using randomly selected samples confirmed the efficiency of mRT-PCR for the identification of pathogens. Collectively, the present study provides useful resources for developing disease-free seedlings; further, the developed mRT-PCR method can be extended to investigate pathogens in other woody plants.

Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice

  • Kim, Young-Je;Yoon, Dae Seong;Jung, Un Ju
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.431-443
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have beneficial effects on cardiovascular and metabolic health. However, there is limited research investigating the effect of long-term supplementation with low-dose NOB on high-cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia and NAFLD in HCD-fed mice. SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks. RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, with no apparent energy intake differences. NOB supplementation suppressed HCD-induced weight loss without altering energy intake. Moreover, NOB significantly decreased the total cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin and paraoxonase were higher in the NOB-supplemented group than in the HCD control group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-related gene expression and enzyme activities. Dietary NOB supplementation may protect against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-fed mice; these effects are associated with the amelioration of inflammation and reductions in the levels of atherosclerosis-associated cardiovascular markers. CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.

The effects of naringenin and naringin on the glucose uptake and AMPK phosphorylation in high glucose treated HepG2 cells

  • Dayarathne, Lakshi A.;Ranaweera, Sachithra S.;Natraj, Premkumar;Rajan, Priyanka;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.92.1-92.12
    • /
    • 2021
  • Background: Naringin and its aglycone naringenin are citrus-derived flavonoids with several pharmacological effects. On the other hand, the mechanism for the anti-diabetic effects of naringenin and naringin are controversial and remain to be clarified further. Objective: This study examined the relationship between glucose uptake and AMP-activated protein kinase (AMPK) phosphorylation by naringenin and naringin in high glucose-treated HepG2 cells. Methods: Glucose uptake was measured using the 2-NBDG fluorescent D-glucose analog. The phosphorylation levels of AMPK and GSK3β (Glycogen synthase kinase 3 beta) were observed by Western blotting. Molecular docking analysis was performed to evaluate the binding affinity of naringenin and naringin to the γ-subunit of AMPK. Results: The treatment with naringenin and naringin stimulated glucose uptake regardless of insulin stimulation in high glucose-treated HepG2 cells. Both flavonoids increased glucose uptake by promoting the phosphorylation of AMPK at Thr172 and increased the phosphorylation of GSK3β. Molecular docking analysis showed that both naringenin and naringin bind to the γ-subunit of AMPK with high binding affinities. In particular, naringin showed higher binding affinity than the true modulator, AMP with all three CBS domains (CBS1, 3, and 4) in the γ-subunit of AMPK. Therefore, both naringenin and naringin could be positive modulators of AMPK activation, which enhance glucose uptake regardless of insulin stimulation in high glucose-treated HepG2 cells. Conclusions: The increased phosphorylation of AMPK at Thr172 by naringenin and naringin might enhance glucose uptake regardless of insulin stimulation in high glucose treated HepG2 cells.

Xylella fastidiosa in Europe: From the Introduction to the Current Status

  • Vojislav, Trkulja;Andrija, Tomic;Renata, Ilicic;Milos, Nozinic;Tatjana Popovic, Milovanovic
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.551-571
    • /
    • 2022
  • Xylella fastidiosa is xylem-limited bacterium capable of infecting a wide range of host plants, resulting in Pierce's disease in grapevine, citrus variegated chlorosis, olive quick decline syndrome, peach phony disease, plum leaf scald, alfalfa dwarf, margin necrosis and leaf scorch affecting oleander, coffee, almond, pecan, mulberry, red maple, oak, and other types of cultivated and ornamental plants and forest trees. In the European Union, X. fastidiosa is listed as a quarantine organism. Since its first outbreak in the Apulia region of southern Italy in 2013 where it caused devastating disease on Olea europaea (called olive leaf scorch and quick decline), X. fastidiosa continued to spread and successfully established in some European countries (Corsica and PACA in France, Balearic Islands, Madrid and Comunitat Valenciana in Spain, and Porto in Portugal). The most recent data for Europe indicates that X. fastidiosa is present on 174 hosts, 25 of which were newly identified in 2021 (with further five hosts discovered in other parts of the world in the same year). From the six reported subspecies of X. fastidiosa worldwide, four have been recorded in European countries (fastidiosa, multiplex, pauca, and sandyi). Currently confirmed X. fastidiosa vector species are Philaenus spumarius, Neophilaenus campestris, and Philaenus italosignus, whereby only P. spumarius (which has been identified as the key vector in Apulia, Italy) is also present in Americas. X. fastidiosa control is currently based on pathogen-free propagation plant material, eradication, territory demarcation, and vector control, as well as use of resistant plant cultivars and bactericidal treatments.