• Title/Summary/Keyword: Korea power system

Search Result 12,461, Processing Time 0.045 seconds

Power System Design in the Inchon Inta'l Airport (인천국제공항 전력시스템 설계)

  • Oh, Y.D.;Min, S.J.;Lim, J.G.;Moon, J.H.;Lee, T.S.;Lee, K.S.;Son, J.Y.;Kim, J.H.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1125-1127
    • /
    • 1998
  • Inchon International Airport(IIA) is constructed for Northeast Asia Gate as is important for IIA to become a 21 century's leader in the world. as is planned for open at December 2000 as a important economic link for unified korea. Power System is designed through investigation of advanced domestic and international example. In addition to power facility operation it is designed for using an information infrastructure of whole airport. IIA Power System Design make instantaneously the Power Distribution Facilities and the SCADA System to construct the airport. and the Airport Power Information System to operate the Power System. It is designed to take efficient and safe Power System including the advanced technology. Power System make the integrated Power Information Database to operate the Main Control Center, analyze the data about the relation of the Power System and Airport operation, and will support the important files in the future.

  • PDF

The Failure Analysis of Paralleled Solar Array Regulator for Satellite Power System in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • A satellite power system should generate and supply sufficient electric power to perform the satellite mission successfully during the satellite mission period, and it should be developed to be strong to the failure caused by the severe space environment. A satellite power system must have a high reliability with respect to failure. Since it cannot be repaired after launching, different from a ground system, the failures that may happen in space as well as the effect of the failures on the system should be considered in advance. However, it is difficult to use all the hardware to test the performance of the satellite power system to be developed in order to consider the failure mechanism of the electrical power system. Therefore, it is necessary to develop an accurate model for the main components of a power system and, based on that, to develop an accurate model for the entire power system. Through the power system modeling, the overall effect of failure on the main components of the power system can be considered and the protective design can be devised against the failure. In this study, to analyze the failure mode of the power system and the effects of the failure on the power system, we carried out modeling of the main power system components including the solar array regulator, and constituted the entire power system based on the modeling. Additionally, we investigated the effects of representative failures in the solar array regulator on the power system using the power system model.

Lightning Position and Tracking System for Power System Operation (전력계통(電力系統) 낙뢰감지(落雷感知) 및 진로예측(進路豫測) SYSTEM)

  • Hong, Sa-Woo;Kim, Yeong-Han;Kim, Jai-Young
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.70-73
    • /
    • 1992
  • With regard to the supply of electric power in better quality, the problem of lightning is becoming more and more important in the operation of an electric power system. In this article a description is given of the new lightning position and tracking system which will be installed in KEPCO. The system is based on the principle of time-of-arrival (TOA) rather than the conventional direction-finding (DF) method.

  • PDF

Design of Power Factor Correction IC for 1.5kW System Power Module (1.5kW급 System Power Module용 Power Factor Correction IC 설계)

  • Kim, Hyoung-Woo;Seo, Kil-Soo;Kim, Ki-Hyun;Park, Hyun-Il;Kim, Nam-Kyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.499-500
    • /
    • 2008
  • In this paper, we design and implement the monolithic power factor correction IC for system power modules using a high voltage(50V) CMOS process. The power factor correction IC is designed for power applications, such as refrigerator, air-conditioner, etc. It includes low voltage logic, 5V regulator, analog control circuit, high-voltage high current output drivers, and several protection circuits. And also, the designed IC has standby detection function which detects the output power of the converter stage and generates system down signal when load device is under the standby condition. The simulation and experimental results show that the designed IC acts properly as power factor correction IC with efficient protective functions.

  • PDF

Generated heat decrease of resistive superconducting fault current limiter using diodes (Diode를 이용한 저항형 초전도 한류기의 열발생 저감방안)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dole;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.925-927
    • /
    • 2000
  • We fabricated a resistive superconducting fault current limiter of meander type based on a YBCO film. In order to disperse the heat generated at hot spots in the YBCO film the film was coated with a gold shunt layer. When diodes were inserted in the parallel circuit to restrict the temperature increase in the SFCL element by reducing power supply cycles, the voltage could be increased to $\sqrt{2}$ times with the same quench resistance at a half and full cycles.

  • PDF

A Study on The Database Design and Construction of Power System Operational Planning System (전력수급계획시스템 데이터베이스 설계 및 구축에 관한 연구)

  • Ahn, Yang-Keun;Park, Si-Woo;Nam, Jae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1012-1014
    • /
    • 1998
  • This paper presents a database design for power system operational planning system of the integrated system for power system operational planning and analysis that will be more economical and stable of power system operation. An alias of the integrated system is Highly Integrated Total Energy System(HITES). We first describe the requirements for the Power System Planning System of HTES. Database design is processed in two phases(conceptual design and physical design), and CDM(Conceptual Data Model) and PDM(Physical Data Model) are generated by Powerdesigner(CASE tool for database design). In the future, the constructed database needs to be tested and tuning.

  • PDF

Design & Development of System Architecture for Wide Area Defense System (광역정전 Defense를 위한 System Architecture 설계 및 개발)

  • Kim, S.-Tae;Lee, Jeong-Hyun;Kim, Ji-Young;Lee, Dong-Chul;Moon, Young-Hwan;Kim, Tae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.165-166
    • /
    • 2006
  • Recently, after Wide Area Outage of the North-Eastern United States occurred, many countries started to be concerned about WAMS (Wide Area Monitoring System), and Korean power system also experienced Wide Area outage according to typhoon Mae-Mi, and Haenam-Jeju HVDC line fault. Since it is too difficult to detect a symptom based on SCADA or EMS, a defense system of electric power infrastructure has required. In this research, the designed and developed system processes the time synchronized real time power system information based on GPS and shows the 2D/3D monitoring viewer using the phasor data and the results of three algorithms.

  • PDF

A Practical Power System Stabilizer Tuning Method and its Verification in Field Test

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Baek, Seung-Mook;Choy, Young-Do;Kim, Tae-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.400-406
    • /
    • 2010
  • This paper deals with parameter tuning of the Power System Stabilizer (PSS) for 612 MVA thermal power plants in the KEPCO system and its validation in a field test. In this paper, the selection of parameters, such as lead-lag time constants for phase compensation and system gain, is optimized using linear and eigenvalue analyses. This is then verified through the time-domain transient stability analysis. In the next step, the performance of PSS is finally verified by the generator's on-line field test. After the field test, measured and simulated data are also compared to prove the effectiveness of the models used in the simulations.

The Analysis of 2004 Summer Peak Load in Korea Power system (2004년 하계 첨두부하 시 계통운영 실적 분석)

  • Song, Tae-Yong;Hwang, Bong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.113-115
    • /
    • 2004
  • This year korea power system had recorded highest peak load for 6 times and finally it made new peak load 51,264MW at July 29th 3:00 PM. The new peak load is increased 8.2% from the last year peak load 47,385MW and korea power system entered 50,000MW load era. The Korea Power Exchange (KPX) snapped power system data at the peak load time using state estimation function in the EMS. And authors converted the power system data at peak load to PSS/E power flow format. Using this PSS/E peak load power flow data, this paper explains demand analysis result shun capacitor operation, voltage distribution at the peak load. And the paper shows the simulation result of 2 contingency analysis using the snapped PSS/E peak load data.

  • PDF

Design of SPS in the Korean Power System Against Faults on 765 KV Lines

  • Park Jong-Young;Park Jong-Keun;Jang Byung-Tae
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.132-137
    • /
    • 2005
  • In Korea, the protection systems against the instability of the nation's power system are insufficient in contrast with many other countries. In addition, there have just been studies carried out on detecting power system instability, while only a few studies pertaining to protection plans against instability exist. This paper focuses on systems to protect against the instability phenomena in the Korean power system. In this paper, we survey possible contingencies in the Korean power system and suggest outline and specs of the SPS (System Protection Scheme) against faults on the 765 kV line, based on simulations. It is concluded that event-based SPS for transient stability is appropriate for the Korean power system. In the simulations, the most severe contingency on the Korean power system is the fault on 765 kV transmission lines. If one of these lines is tripped by a fault, synchronism may be lost on the power plants near this line because of heavy power flow carried by them. In addition, undervoltage in the Metropolitan region is a serious problem in this case since this region receives about half its total power flow through these lines. In order to prevent a synchronism loss, some power plants have to be rejected according to the situations in the simulations.