• Title/Summary/Keyword: Korea Multi-Purpose SATellite-2

Search Result 134, Processing Time 0.027 seconds

Overview of Current Applications of Satellite Images in Agricultural Sectors (농림업 분야의 위성영상 활용현황)

  • Kim, Hyeon-Cheol;Kim, Bum-Seung;Kang, Seo-Li;Hong, Suk-Young;Kim, Yi-Hyun;Lee, Kyung-Do;Na, Sang-Il;Lee, Woo-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • The increasing demands and utilization of the multi-purpose satellites have led to diverse research activities with regards to satellite image processing and applications. In this paper, the research activities of satellite images is investigated relevant to domestic agricultural activities in past 5 years and the system characteristics of the related spaceborne payload is analyzed. For this purpose, a broad range of research materials has been collected published in past years and a statistical analysis is performed to classify the use of satellite images. Overall the current work is aimed to carry out a comprehensive analysis on the current status of satellite imaging in agricultural sectors. Furthermore, this paper can be utilized to identify and support the incoming satellite development plan utilizing medium imaging capabilities specially in the field of agricultural uses.

Improvement of KOMPSAT-5 Image Resolution for Target Analysis (객체 분석을 위한 KOMPSAT-5 영상의 해상도 향상 성능 분석)

  • Lee, Seung-Jae;Chae, Tae-Byeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • A synthetic aperture radar(SAR) satellite is more effective than an optical satellite for target analysis because an SAR satellite can provide two-dimensional electromagnetic scattering distribution of a target during all-weather and day-and-night operations. To conduct target analysis while considering the earth observation interval of an SAR satellite, observing a specific area as wide as possible would be advantageous. However, wider the observation area, worse is the resolution of the associated SAR satellite image. Although conventional methods for improving the resolution of radar images can be employed for addressing this issue, few studies have been conducted for improving the resolution of SAR satellite images and analyzing the performance. Hence, in this study, the applicability of conventional methods to SAR satellite images is investigated. SAR target detection was first applied to Korea Multipurpose Satellite-5(KOMPSAT-5) SAR images provided by Korea Aerospace Research Institute for extracting target responses. Extrapolation, RELAX, and MUSIC algorithms were subsequently applied to the target responses for improving the resolution, and the corresponding performance was thereby analyzed.

ATMOSPHERIC AEROSOL DETECTION AND ITS REMOVEAL FOR SATELLITE DATA

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.598-601
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A high-resolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-1/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

  • PDF

RPC-based epipolar image resampling of Kompsat-2 across-track stereos (RPC를 기반으로 한 아리랑 2호 에피폴라 영상제작)

  • Oh, Jae-Hong;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.157-164
    • /
    • 2011
  • As high-resolution satellite images have enabled large scale topographic mapping and monitoring on global scale with short revisit time, agile sensor orientation, and large swath width, many countries make effort to secure the satellite image information. In Korea, KOMPSAT-2 (KOrea Multi-Purpose SATellite-2) was launched in July 28 2006 with high specification. These satellites have stereo image acquisition capability for 3D mapping and monitoring. To efficiently handle stereo images such as stereo display and monitoring, the accurate epipolar image generation process is prerequisite. However, the process was highly limited due to complexity in epipolar geometry of pushbroom sensor. Recently, the piecewise approach to generate epipolar images using RPC was developed and tested for in-track IKONOS stereo images. In this paper, the piecewise approach was tested for KOMPSAT-2 across-track stereo images to see how accurately KOMPSAT-2 epipolar images can be generated for 3D geospatial applications. In the experiment, two across-track stereo sets from three KOMPSAT-2 images of different dates were tested using RPC as the sensor model. The test results showed that one-pixel level of y-parallax was achieved for manually measured tie points.

Back-scattering Characteristic Analysis for SAR Calibration Site (SAR 검보정 Site 구축을 위한 후방 산란 특성 분석)

  • Lee, Taeseung;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.305-319
    • /
    • 2021
  • The overseas calibration sites such as Mongolia used for Korea Multi-purpose Satellite (KOMPSAT-5 or K5), have a disadvantage in that maintenance and repair costs are high and immediate response is difficult when an unexpected problem occurs. Accordingly, the necessity of establishing a domestic SAR calibration site was suggested, but the progress of related research is insignificant. In this paper, we investigated what conditions should be satisfied in terms of backscattering characteristics to construct a site for SAR satellite image quality evaluation and calibration. First of all, it was selected first by applying general indicators such as accessibility and availability among places recommended as satellite image calibration candidate sitesin Korea. Next, three places, site A (Goheung-gun, Jeollanam-do), site B (Jeonju-si, Jeollabuk-do), and site C (Daedeok Research Complex, Daejeon), were selected as the final candidates because they are relatively wide and easy to install AT or CR. Site A, located in Goheung-gun, Jeollanam-do, was best considered in terms of slope measurements, minimum site area to obtain ISLR, uniformity of DN values and backscatter coefficients, interference by strong reflectors, and backscatter clutter level.

High Intensity Acoustic Test for KOMPSAT-2 STM (다목적 실용위성 2호 구조-열모델의 음향 환경 시험)

  • 김홍배;문상무;김영기;우성현;이상설;김성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.862-866
    • /
    • 2002
  • High intensity vibro-acoustic testing is the appropriate method for flight qualification testing of space flight vehicle which must ensure the acoustic environment of launch. To qualify vibro-acoustic environment during its flight, High Intensity Acoustic Test was performed for KOMPSAT-2(Korea Multi-Purpose SATellite) STM(Structural Thermal Model). This paper presents the detailed description on the high intensity acoustic test for KOMPSAT-2. Additionally the test results was compared with the analysis ones, which were estimated with 3-D SEA(Statistical Energy Analysis) model.

  • PDF

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.

Time Optimal Attitude Maneuver Strategies for the Agile Spacecraft with Reaction Wheels and Thrusters

  • Lee Byung-Hoon;Lee Bong-Un;Oh Hwa-Suk;Lee Seon-Ho;Rhee Seung-Wu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1695-1705
    • /
    • 2005
  • Reaction wheels and thrusters are commonly used for the satellite attitude control. Since satellites frequently need fast maneuvers, the minimum time maneuvers have been extensively studied. When the speed of attitude maneuver is restricted due to the wheel torque capacity of low level, the combinational use of wheel and thruster is considered. In this paper, minimum time optimal control performances with reaction wheels and thrusters are studied. We first identify the features of the maneuvers of the satellite with reaction wheels only. It is shown that the time-optimal maneuver for the satellite with four reaction wheels in a pyramid configuration occurs on the fashion of single axis rotation. Pseudo control logic for reaction wheels is successfully adopted for smooth and chattering-free time-optimal maneuvers. Secondly, two different thrusting logics for satellite time-optimal attitude maneuver are compared with each other: constant time-sharing thrusting logic and varying time-sharing thrusting logic. The newly suggested varying time-sharing thrusting logic is found to reduce the maneuvering time dramatically. Finally, the hybrid control with reaction wheels and thrusters are considered. The simulation results show that the simultaneous actuation of reaction wheels and thrusters with varying time-sharing logic reduces the maneuvering time enormously. Spacecraft model is Korea Multi-Purpose Satellite (KOMPSAT)-2 which is being developed in Korea as an agile maneuvering satellite.

INTRODUCTION TO THE COMS METEOROLOGICAL DATA PROCESSING SYSTEM

  • Ahn Myoung-Hwan;Seo Eun-Jin;Chung Chu-Yong;Sohn Byung-Ju;Suh Myoung-Seok;Oh Milim
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.95-97
    • /
    • 2005
  • Communication, Ocean, and Meteorological Satellite (COMS) to be launched in year 2008 will be the first Korean multi-purpose geostationary satellite aiming at three major missions, i.e.: communication, ocean, and meteorological applications. The development of systems for the meteorological mission sponsored by the Korea Meteorological Administration (KMA) consists of payloads, ground system, and data processing system. The program called COMS Meteorological Data Processing System (CMDPS) has been initiated for the development of data processing system. The primary objective ofCMDPS is to derive the level-2 environmental products from geo-Iocated and calibrated level 1.5 COMS data. Preliminary design for the level-2 data processing system consists of 16 baseline products and will be refined by end of 3rd project year. Also considered for the development are the necessary initial information such as land use and digital elevation map, algorithms for the vicarious calibration and procedures for the calibration monitoring, and radiative transfer model. Here, we briefly introduce the overall development strategy, flow chart for the intended baseline products, a few preliminary algorithm results and future plans.

  • PDF

Improvement of Air Temperature Analysis by Precise Spatial Data on a Local-scale - A Case Study of Eunpyeong New Town in Seoul - (상세 공간정보를 활용한 국지기온 분석 개선 - 서울 은평구 뉴타운을 사례로 -)

  • Yi, Chae-Yeon;An, Seung-Man;Kim, Kyu-Rang;Choi, Young-Jean;Scherer, Dieter
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.144-158
    • /
    • 2012
  • A higher spatial resolution is preferable to support the accuracy of detailed climate analysis in urban areas. Airborne LiDAR (Light Detection And Ranging) and satellite (KOMPSAT-2, Korea Multi-Purpose Satellite-2) images at 1 to 4 m resolution were utilized to produce digital elevation and building surface models as well as land cover maps at very high(5m) resolution. The Climate Analysis Seoul(CAS) was used to calculate the fractional coverage of land cover classes in built-up areas and thermal capacity of the buildings from their areal volumes. It then produced analyzed maps of local-scale temperature based on the old and new input data. For the verification of the accuracy improvement by the precise input data, the analyzed maps were compared to the surface temperature derived from the ASTER satellite image and to the ground observation at our detailed study region. After the enhancement, the ASTER temperature was highly correlated with the analyzed temperature at building (BS) areas (R=0.76) whereas there observed no correlation with the old input data. The difference of the air temperature deviation was reduced from 1.27 to 0.70K by the enhancement. The enhanced precision of the input data yielded reasonable and more accurate local-scale temperature analysis based on realistic surface models in built-up areas. The improved analysis tools can help urban planners evaluating their design scenarios to be prepared for the urban climate.