• Title/Summary/Keyword: Kompsat stereo image pair

Search Result 10, Processing Time 0.025 seconds

Analysis of Geometric and Spatial Image Quality of KOMPSAT-3A Imagery in Comparison with KOMPSAT-3 Imagery

  • Erdenebaatar, Nyamjargal;Kim, Jaein;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • This study investigates the geometric and spatial image quality analysis of KOMPSAT-3A stereo pair. KOMPSAT-3A is, the latest satellite of KOMPSAT family, a Korean earth observation satellite operating in optical bands. A KOMPSAT-3A stereo pair was taken on 23 November, 2015 with 0.55 m ground sampling distance over Terrassa area of Spain. The convergence angle of KOMPSAT-3A stereo pair was estimated as $58.68^{\circ}$. The investigation was assessed through the evaluation of the geopositioning analysis, image quality estimation and the accuracy of automatic Digital Surface Model (DSM) generation and compared with those of KOMPSAT-3 stereo pair with the convergence angle of $44.80^{\circ}$ over the same area. First, geopositioning accuracy was tested with initial rational polynomial coefficients (RPCs) and after compensating the biases of the initial RPCs by manually collected ground control points. Then, regarding image quality, relative edge response was estimated for manually selected points visible from two stereo pairs. Both of the initial and bias-compensated positioning accuracy and the quality assessment result expressed that KOMPSAT-3A images showed higher performance than those of KOMPSAT-3 images. Finally, the accuracy of DSMs generated from KOMPSAT-3A and KOMPSAT-3 stereo pairs were examined with respect to the reference LiDAR-derived DSM. The various DSMs were generated over the whole coverage of individual stereo pairs with different grid spacing and over three types of terrain; flat, mountainous and urban area. Root mean square errors of DSM from KOMPSAT-3A pair were larger than those for KOMPSAT-3. This seems due to larger convergence angle of the KOMPSAT-3A stereo pair.

Accuracy Estimation of Electro-optical Camera (EOC) on KOMPSAT-1

  • Park, Woon-Yong;Hong, Sun-Houn;Song, Youn-Kyung
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2002
  • Remote sensing is the science and art of obtaining information about an object, area or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation./sup 1)/ EOC (Electro -Optical Camera) sensor loaded on the KOMPSAT-1 (Korea Multi- Purpose Satellite-1) performs the earth remote sensing operation. EOC can get high-resolution images of ground distance 6.6m during photographing; it is possible to get a tilt image by tilting satellite body up to 45 degrees at maximum. Accordingly, the device developed in this study enables to obtain images by photographing one pair of tilt image for the same point from two different planes. KOMPSAT-1 aims to obtain a Korean map with a scale of 1:25,000 with high resolution. The KOMPSAT-1 developed automated feature extraction system based on stereo satellite image. It overcomes the limitations of sensor and difficulties associated with preprocessing quite effectively. In case of using 6, 7 and 9 ground control points, which are evenly spread in image, with 95% of reliability for horizontal and vertical position, 3-dimensional positioning was available with accuracy of 6.0752m and 9.8274m. Therefore, less than l0m of design accuracy in KOMPSAT-1 was achieved. Also the ground position error of ortho-image, with reliability of 95%, is 17.568m. And elevation error showing 36.82m was enhanced. The reason why elevation accuracy was not good compared with the positioning accuracy used stereo image was analyzed as a problem of image matching system. Ortho-image system is advantageous if accurate altitude and production of digital elevation model are desired. The Korean map drawn on a scale of 1: 25,000 by using the new technique of KOMPSAT-1 EOC image adopted in the present study produces accurate result compared to existing mapping techniques involving high costs with less efficiency.

  • PDF

Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data (KOMPSAT-2 입체영상의 자동 기하 보정)

  • Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.191-202
    • /
    • 2012
  • A high resolution satellite imagery such as KOMPSAT-2 includes a material containing rational polynomial coefficient (RPC) for three-dimensional geopositioning. However, image geometries which are calculated from the RPC must have inevitable systematic errors. Thus, it is necessary to correct systematic errors of the RPC using several ground control points (GCPs). In this paper, we propose an efficient method for automatic correction of image geometries using tie points of a stereo pair and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) without GCPs. This method includes four steps: 1) tie points extraction, 2) determination of the ground coordinates of the tie points, 3) refinement of the ground coordinates using SRTM DEM, and 4) RPC adjustment model parameter estimation. We validates the performance of the proposed method using KOMPSAT-2 stereo pair. The root mean square errors (RMSE) achieved from check points (CPs) were about 3.55 m, 9.70 m and 3.58 m in X, Y;and Z directions. This means that we can automatically correct the systematic error of RPC using SRTM DEM.

Epipolar Resampling from Kompsat-2 and Kompsat-3 (아리랑 위성 2호와 3호를 이용한 이종 영상 간 에피폴라 영상 생성)

  • Song, Jeong-Heon;Oh, Jae-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.156-166
    • /
    • 2014
  • As of 2014, KARI (Korea Aerospace Research Institute) operates two high-resolution satellites such as Kompsat-2 and Kompsat-3. Kompsat-3 has capability of in-track stereo images acquisition but it is quite limited because the stereo mode lowers the spatial coverage in a trajectory. In this paper we analyze the epipolar geometry from the heterogeneous Kompsat-2 and Kompsat-3 image combination to epipolar resample them for 3D spatial data acquisition. The analysis was carried out using the piecewise approach with RPCs (Rational Polynomial Coefficients) and the result showed the parabolic epipolar curve pattern. We also concluded that the third order polynomial transformation is required for epipolar image resampling. The resampled image pair showed 1 pixel level of y-parallax and can be used for 3D display and digitizing.

Extracting DEM Using Kompsat Images (Kompsat 영상을 이용한 수치표고모델추출)

  • Choi, Hyun;Kang, In-Joon;Hong, Soon-Heun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.71-77
    • /
    • 2002
  • DEMs(digital elevation models) are generally used to automatically map the channel network and to delineate subbasins. At present, most DEM data are derived from three alternative sources which are ground survey, pphotogrammetric data capture and digitized cartographic data sources. The accuracy of a DEM is dependent on the spatial resolution, quality of the source data, collection and processing procedures, and digitizing systems. weather conditions and nature environment.etc provide us satellite image of the highest quality. However, Match in error of the auto generation DEM was severely affected by physical and environmental conditions at shooting time. This paper shows that real-time operation analysis of applied hydrology after extracting DEM Using a pair of Kompsat images.

  • PDF

Comparison and Analysis of Matching DEM Using KOMPSAT-3 In/Cross-track Stereo Pair (KOMPSAT-3 In/Cross-track 입체영상을 이용한 매칭 DEM 비교 분석)

  • Oh, Kwan-Young;Jeong, Eui-Cheon;Lee, Kwang-Jae;Kim, Youn-Soo;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1445-1456
    • /
    • 2018
  • The purpose of this study is to compare the quality and characteristics of matching DEMs by using KOMPSAT-3 stereo pair capture in in-track and cross-track. For this purpose, two stereo pairs of KOMPSAT-3 were collected that were taken in the same area. The two stereo pairs have similar stereo geometry elements such as B/H, convergence angle. Sensor modeling for DEM production was performed with RFM affine calibration using multiple GCPs. The GCPs used in the study were extracted from the 0.25 m ortho-image and 5 meter DEM provided by NGII. In addition, matching DEMs were produced at the same resolution as the reference DEMs for a comparison analysis. As a result of the experiment, the horizontal and vertical errors at the CPs indicated an accuracy of 1 to 3 pixels. In addition, the shapes and accuracy of two DEMs produced in areas where the effects of natural or artificial surface land were low were almost similar.

Effects of spatial resolution on digital image to detect pine trees damaged by pine wilt disease

  • Lee, Seung-Ho;Cho, Hyun-Kook
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.260-263
    • /
    • 2005
  • This study was carried out to investigate the effects of spatial resolutions on digital image for detecting pine trees damaged by pine wilt disease. Color infrared images taken from PKNU-3 multispectral airborne photographing system with a spatial resolution of 50cm was used as a basic data. Further test images with spatial resolutions of 1m, 2m and 4m were made from the basic data to test the detecting capacity on each spatial resolution. The test was performed with visual interpretation both on mono and stereo modus and compared with field surveying data. It can be conclude that it needs less than 1m spational resolutions or 1m spatial resolutions with stereo pair in order to detect pine trees damaged by pine wilt disease.

  • PDF

A STUDY ON DEM GENE]RATON USING POLYNOMIAL CAMERA MODEL IN SATELLITE IMAGERY

  • Jeon, Seung-Hun;Kim, Sung-Chai;Lee, Heung-Jae;Lee, Kae-hei
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.518-523
    • /
    • 2002
  • Nowadays the Rational Function Model (RFM), an abstract sensor model, is substituting physical sensor models for highly complicated imaging geometry. But RFM is algorithm to be required many Ground Control Points (GCP). In case of RFM of the third order, At least forty GCP are required far RFM generation. The purpose of this study is to research more efficient algorithm on GCP and accurate algorithm similar to RFM. The Polynomial Camera Model is relatively accurate and requires a little GCP in comparisons of RFM. This paper introduces how to generate Polynomial Camera Model and fundamental algorithms for construction of 3-D topographic data using the Polynomial Camera Model information in the Kompsat stereo pair and describes how to generate the 3-D ground coordinates by manual matching. Finally we tried to extract height information for the whole image area with the stereo matching technique based on the correlation.

  • PDF

A Study on the Method for Three-dimensional Geo-positioning Using Heterogeneous Satellite Stereo Images (이종위성 스테레오 영상의 3차원 위치 결정 방법 연구)

  • Jaehoon, Jeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • This paper suggests an intersection method to improve the accuracy of three-dimensional position from heterogeneous satellite stereo images, and addresses validation of the suggested method following the experimental results. The three-dimensional position is achieved by determining an intersection point of two rays that have been precisely adjusted through the sensor orientation. In case of conventional homogeneous satellite stereo images, the intersection point is generally determined as a mid-point of the shortest line that links two rays in at least square fashion. In this paper, a refined method, which determines the intersection point upon the ray adjusted at the higher resolution image, was used to improve the positioning accuracy of heterogeneous satellite images. Those heterogeneous satellite stereo pairs were constituted using two KOMPSAT-2 and QuickBird images of covering the same area. Also, the positioning results were visually compared in between the conventional intersection and the refined intersection, while the quantitative analysis was performed. The results demonstrated that the potential of refined intersection improved the positioning accuracy of heterogeneous satellite stereo pairs; especially, with a weak geometry of the heterogeneous satellite stereo, the greater effects on the accuracy improvement.

Accuracy Evaluation of DEM generated from Satellite Images Using Automated Geo-positioning Approach

  • Oh, Kwan-Young;Jung, Hyung-Sup;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • S The need for an automated geo-positioning approach for near real-time results and to boost cost-effectiveness has become increasingly urgent. Following this trend, a new approach to automatically compensate for the bias of the rational function model (RFM) was proposed. The core idea of this approach is to remove the bias of RFM only using tie points, which are corrected by matching with the digital elevation model (DEM) without any additional ground control points (GCPs). However, there has to be a additional evaluation according to the quality of DEM because DEM is used as a core element in this approach. To address this issue, this paper compared the quality effects of DEM in the conduct of the this approach using the Shuttle Radar Topographic Mission (SRTM) DEM with the spatial resolution of 90m. and the National Geographic Information Institute (NGII) DEM with the spatial resolution of 5m. One KOMPSAT-2 stereo-pair image acquired at Busan, Korea was used as experimental data. The accuracy was compared to 29 check points acquired by GPS surveying. After bias-compensation using the two DEMs, the Root Mean Square (RMS) errors were less than 6 m in all coordinate components. When SRTM DEM was used, the RMSE vector was about 11.2m. On the other hand, when NGII DEM was used, the RMSE vector was about 7.8 m. The experimental results showed that automated geo-positioning approach can be accomplished more effectively by using NGII DEM with higher resolution than SRTM DEM.