• 제목/요약/키워드: Knock-in

검색결과 400건 처리시간 0.031초

LPG엔진에서 이온프로브를 이용한 노킹 발생 위치 추정에 관한 연구 (Study on the Estimation of Knock Position in a LPG Engine with Ion-probe Head Gasket)

  • 이정원;최회명;조훈;황승환;민경덕
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.42-48
    • /
    • 2003
  • LPG has been a broad concern of pro-environmental alternative fuel for vehicles. Recently, the new Liquid Phase LPG Injection(LPLI) system extends the limit of power of LPG engine and gives a chance to substitute LPG engine for diesel engine of heavy duty vehicles that are the main resources of air pollution in urban area. Large bore size of heavy duty LPG engine derives a serious knock problem. To find an optimal MBT conditions, it is necessary to know how the flame develops in the combustion chamber and find where the knock positions are. In this study. the ion-probe head gasket was used to estimate the knock position. Inverse operation of the ion-probe signal provides the flame developing characteristics. The further the position is from the spark plug, the later the flame arrives and the more times knock occurs. The main factor that effects knock position is inferred a flor situation of mixed gas in the combustion chamber.

Relationship between DNA mismatch repair and CRISPR/Cas9-mediated knock-in in the bovine β-casein gene locus

  • Kim, Seung-Yeon;Kim, Ga-Yeon;You, Hyeong-Ju;Kang, Man-Jong
    • Animal Bioscience
    • /
    • 제35권1호
    • /
    • pp.126-137
    • /
    • 2022
  • Objective: Efficient gene editing technology is critical for successful knock-in in domestic animals. RAD51 recombinase (RAD51) gene plays an important role in strand invasion during homologous recombination (HR) in mammals, and is regulated by checkpoint kinase 1 (CHK1) and CHK2 genes, which are upstream elements of RAD51 recombinase (RAD51). In addition, mismatch repair (MMR) system is inextricably linked to HR-related pathways and regulates HR via heteroduplex rejection. Thus, the aim of this study was to investigate whether clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9)-mediated knock-in efficiency of human lactoferrin (hLF) knock-in vector in the bovine β-casein gene locus can be increased by suppressing DNA MMR-related genes (MSH2, MSH3, MSH6, MLH1, and PMS2) and overexpressing DNA double-strand break (DSB) repair-related genes (RAD51, CHK1, CHK2). Methods: Bovine mammary epithelial (MAC-T) cells were transfected with a knock-in vector, RAD51, CHK1, or CHK2 overexpression vector and CRISPR/sgRNA expression vector to target the bovine β-casein gene locus, followed by treatment of the cells with CdCl2 for 24 hours. After 3 days of CdCl2 treatment, the knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA expression levels of DNA MMR-related and DNA DSB repair-related genes were assessed by quantitative real-time PCR (RT-qPCR). Results: Treatment with CdCl2 decreased the mRNA expression of RAD51 and MMRrelated genes but did not increase the knock-in efficiency in MAC-T cells. Also, the overexpression of DNA DSB repair-related genes in MAC-T cells did not significantly affect the mRNA expression of MMR-related genes and failed to increase the knock-in efficiency. Conclusion: Treatment with CdCl2 inhibited the mRNA levels of RAD51 and DNA MMR-related genes in MAC-T cells. However, the function of MMR pathway in relation to HR may differ in various cell types or species.

전신조정술의 맨손 중재와 자가교정운동 모형이 휜 다리의 교정에 미치는 영향 (The Effects of the Manual Intervention and Self Corrective Exercise Models of General Coordinative Manipulation on the Distorsional Leg)

  • 김윤서;문상은
    • 대한통합의학회지
    • /
    • 제3권1호
    • /
    • pp.29-39
    • /
    • 2015
  • Purpose: The purpose of this study was to analyze the effect of the manual intervention and self corrective exercise models of GCM(General Coordinative Manipulation) on the groups bow-knee and knock-knee. Methods: GCM Center of 23 members were divided into the two different groups. 12 members of group bow-knee and 11 members of group knock-knee applied to each manual intervention and self corrective exercise models of GCM. Two different groups were applied to 1 cycle a day for 4 weeks, 3 times a week. Results: The effect of manual intervention and self corrective exercise models of GCM on the groups bow-knee and knock-knee was significant(z<.05). The relationship between groups bow-knee and knock-knee was no significant(z>.05). Conclusion: the manual intervention and self corrective exercise models of GCM was contributed in the Correct recovery of bow-knee and knock-knee(z<.05).

α1,3-Galactosyltransferase 유전자 위치에 사람 Decay Accelerating Factor와 α1,2-Fucosyltransferase 유전자가 Knock-in된 미니돼지 체세포 (Knock-in Somatic Cells of Human Decay Accelerating Factor and α1,2-Fucosyltransferase Gene on the α1,3-Galactosyltransferase Gene Locus of Miniature Pig)

  • 김지우;강만종
    • Reproductive and Developmental Biology
    • /
    • 제39권3호
    • /
    • pp.59-67
    • /
    • 2015
  • 동물의 장기를 인간에게 이식하게 되면 초급성거부반응(Hyperacute rejection, HAR)이 일어난다. 초급성거부반응은 면역계의 구성요소 중 보체(complement)에 의해 일어나는 거부반응으로 돼지의 혈관세포 표면에 있는 $Gal{\alpha}$(1,3)Gal 당분자에 인간의 항체가 즉각 반응하기 때문에 일어나며, ${\alpha}1,3$-galactosyltransferase(${\alpha}1,3$-GT) 유전자는 돼지 혈관세포 표면의 $Gal{\alpha}$(1,3)Gal 당분자 생성에 관여한다. 따라서 인간에게 돼지의 장기를 이식하기 위해서는 ${\alpha}1,3$-galactosyltransferase 유전자를 제거하는 것이 필요한 것으로 알려져 있다. 본 연구실의 이전 연구에서, 시카고 미니돼지 귀체세포에서 상동 재조합(Homologous recombination)을 통해 ${\alpha}1,3$-galactosyltransferase 유전자가 제거된 체세포를 개발한 바 있으며, 이 체세포를 통하여 ${\alpha}1,3$-GT 유전자가 제거된 돼지도 생산된 바 있다. 본 연구에서는, human serum 처리 시 돼지 세포를 보호해 준다고 보고되고 있는 human complement regulator인 human Decay-accelerating factor(hDAF)와 human ${\alpha}1,2$-fucosyltransferase(hHT)유전자를 ${\alpha}1,3$-GT 유전자 위치에 gene targeting하여 동시에 hDAF와 hHT가 발현하는 체세포를 개발하였다. Knock-in vector는 hDAF와 hHT 두 유전자가 발현할 수 있도록 IRES로 연결하였으며, ${\alpha}1,3$-GT 유전자의 start codon을 이용하여 발현할 수 있도록 구축하였다. 구축한 vector는 electroporation을 통해 미니 돼지 체세포에 도입하였으며, PCR 결과, ${\alpha}1,3$-GT 유전자 위치에서 상동 재조합이 일어났음을 확인하였다. Positive-negative 선별 방법을 통해 얻은 gene targeting 된 체세포는 RT-PCR에 의해 hDAF와 hHT 유전자의 발현이 확인되었으며, 대조군(NIH minipig)에 비해 ${\alpha}1,3$-GT 유전자의 발현이 감소하였다. 또한 이들 세포에 100% human complement serum을 처리하였을 때 knock-in 세포가 대조군에 비해 30% 정도 더 높은 생존율을 보였다. 따라서 개발된 체세포는 이종간 장기이식을 위한 돼지 생산과 함께 이를 이용한 이종간의 장기 이식 시 초급성 거부반응을 억제하는 데 사용될 수 있을 것으로 생각된다.

스파크노크 발생에 대한 이론적 예측방법 (Theoretical Prediction Method on Occurrence of Spark Knock)

  • 이내현;오영일;이성열
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3326-3334
    • /
    • 1994
  • To theoretically predict knock occurrence in S. I. engine as a function of engine design and operating parameters, transient local temperature and pressure, mixture density of flame front in combustion period are calculated. We next determined normal combustion period and auto ignition period of end gas using the prediction method on occurrence of spark knock which we suggested. We predict knock occurrence in S. I. engine by comparing consecutively normal combustion period with the auto ignition period of end gas in combustion period. Engine design and operating parameters such as compression ratio, engine speed, spark timing, inlet temperature and pressure are taken into account in this calculations. The predicted result are well matched with the experimental results in turbocharged engine. Therefore, this method will provide the systematic guideline for designing engines in view of knocking limits.

Cadmium chloride down-regulates the expression of Rad51 in HC11 cells and reduces knock-in efficiency

  • Ga-Yeon Kim;Man-Jong Kang
    • 한국동물생명공학회지
    • /
    • 제38권3호
    • /
    • pp.99-108
    • /
    • 2023
  • Background: Efficient gene editing technology is needed for successful knock-in. Homologous recombination (HR) is a major double-strand break repair pathway that can be utilized for accurately inserting foreign genes into the genome. HR occurs during the S/G2 phase, and the DNA mismatch repair (MMR) pathway is inextricably linked to HR to maintain HR fidelity. This study was conducted to investigate the effect of inhibiting MMR-related genes using CdCl2, an MMR-related gene inhibitor, on HR efficiency in HC11 cells. Methods: The mRNA and protein expression levels of MMR-related genes (Msh2, Msh3, Msh6, Mlh1, Pms2), the HR-related gene Rad51, and the NHEJ-related gene DNA Ligase IV were assessed in HC11 cells treated with 10 μM of CdCl2 for 48 hours. In addition, HC11 cells were transfected with a CRISPR/sgRNA expression vector and a knock-in vector targeting Exon3 of the mouse-beta casein locus, and treated with 10 μM cadmium for 48 hours. The knock-in efficiency was monitored through PCR. Results: The treatment of HC11 cells with a high-dose of CdCl2 decreased the mRNA expression of the HR-related gene Rad51 in HC11 cells. In addition, the inhibition of MMR-related genes through CdCl2 treatment did not lead to an increase in knock-in efficiency. Conclusions: The inhibition of MMR-related gene expression through high-dose CdCl2 treatment reduces the expression of the HR-related gene Rad51, which is active during recombination. Therefore, it was determined that CdCl2 is an inappropriate compound for improving HR efficiency.

유전자 편집 기술에 의한 형질전환 가축의 생산 현황 (Current Status of Production of Transgenic Livestock by Genome Editing Technology)

  • 박다솜;김소섭;구덕본;강만종
    • 한국동물생명공학회지
    • /
    • 제34권3호
    • /
    • pp.148-156
    • /
    • 2019
  • The Transgenic livestock can be useful for the production of disease-resistant animals, pigs for xenotranplantation, animal bioreactor for therapeutic recombinant proteins and disease model animals. Previously, conventional methods without using artificial nuclease-dependent DNA cleavage system were used to produce such transgenic livestock, but their efficiency is known to be low. In the last decade, the development of artificial nucleases such as zinc-finger necleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas has led to more efficient production of knock-out and knock-in transgenic livestock. However, production of knock-in livestock is poor. In mouse, genetically modified mice are produced by coinjecting a pair of knock-in vector, which is a donor DNA, with a artificial nuclease in a pronuclear fertilized egg, but not in livestock. Gene targeting efficiency has been increased with the use of artificial nucleases, but the knock-in efficiency is still low in livestock. In many research now, somatic cell nuclear transfer (SCNT) methods used after selection of cell transfected with artificial nuclease for production of transgenic livestock. In particular, it is necessary to develop a system capable of producing transgenic livestock more efficiently by co-injection of artificial nuclease and knock-in vectors into fertilized eggs.

Recent Progress in Biotechnology-based Gene Manipulating Systems to Produce Knock-In/Out Mouse Models

  • Lee, Woon Kyu;Park, Joong Jean;Cha, Seok Ho;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권5호
    • /
    • pp.745-753
    • /
    • 2008
  • Gene-manipulated mice were discovered for the first time about a quarter century ago. Since then, numerous sophisticated technologies have been developed and applied to answer key questions about the fundamental roles of the genes of interest. Functional genomics can be characterized into gain-of-function and loss-of-function, which are called transgenic and knock-out studies, respectively. To make transgenic mice, the most widely used technique is the microinjection of transgene-containing vectors into the embryonic pronucleus. However, there are critical drawbacks: namely position effects, integration of unknown copies of a foreign gene, and instability of the foreign DNA within the host genome. To overcome these problems, the ROSA26 locus was used for the knock-in site of a transgene. Usage of this locus is discussed for the gain of function study as well as for several brilliant approaches such as conditional/inducible transgenic system, reproducible/inducible knockdown system, specific cell ablation by Cre-mediated expression of DTA, Cre-ERTM mice as a useful tool for temporal gene regulation, MORE mice as a germ line delete and site specific recombinase system. Techniques to make null mutant mice include complicated steps: vector design and construction, colony selection of embryonic stem (ES) cells, production of chimera mice, confirmation of germ line transmission, and so forth. It is tedious and labor intensive work and difficult to approach. Thus, it is not readily accessible by most researchers. In order to overcome such limitations, technical breakthroughs such as reporter knock-in and gene knock-out system, production of homozygous mutant ES cells from a single targeting vector, and production of mutant mice from tetraploid embryos are developed. With these upcoming progresses, it is important to consider how we could develop these systems further and expand to other animal models such as pigs and monkeys that have more physiological similarities to humans.

Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein

  • Lee, Sang Mi;Kim, Ji Woo;Jeong, Young-Hee;Kim, Se Eun;Kim, Yeong Ji;Moon, Seung Ju;Lee, Ji-Hye;Kim, Keun-Jung;Kim, Min-Kyu;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권11호
    • /
    • pp.1644-1651
    • /
    • 2014
  • Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine ${\beta}$-casein gene locus using a knock-in vector for the ${\beta}$-casein gene locus. We developed the knock-in vector on the porcine ${\beta}$-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5' arm and 3' arm from the porcine ${\beta}$-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using ${\beta}$-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous ${\beta}$-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands.

노크센서를 이용한 점화시기 피이드백 제어에 관한 연구 (Study on ignition timing feedback control using the knock sensor)

  • 김연준;고상근
    • 오토저널
    • /
    • 제14권4호
    • /
    • pp.61-67
    • /
    • 1992
  • The ignition timing feedback control system was studied to enhance the engine power and to reduce the fuel consumption by optimizing the spark timing. The signal of a piezo-electric vibration transducer attached to the engine block was compared with that of a pressure transducer in order to determine the knock intensity. With the result of comparison the ignition timing feedback control system which detect the knock and correct the spark timing was set up. The ignition could be more advaced with this control system than the existing system without the continuous knocking, therefore the engine torque was increased.

  • PDF