• Title/Summary/Keyword: Knee simulator

Search Result 11, Processing Time 0.037 seconds

Analysis of the Contact Pressure Distribution and Kinetics of Knee Implant Using the Simulator (Simulator를 이용한 인공무릎관절 접촉면의 압력분포 및 운동성 분석)

  • 이문규;김종민;김동민;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.363-367
    • /
    • 2003
  • Contact area and pressure are important factors which directly influence a life of knee implants. Since implant's mechanical functions should be experimentally evaluated for clinical use, many studies using a knee simulator and a pressure sensor system have been conducted. However it has not been reported that the contact pressure's distribution of a knee implant motion was estimated in real-time during a gate cycle. Therefore. the objective of this study was to analyze the contact pressure distribution for the motion of a joint using the knee simulator and I-scan sensor system. For this purpose, we developed a force-controlled dynamic knee simulator to evaluate the mechanical performance of artificial knee joint. This simulator includes a function of a soft tissue and has a 4-degree-of-freedom to represent an axial compressive load and a flexion angle. As axial compressive force and a flexion angle of the femoral component can be controlled by PC program. The pressure is also measured from I-scan system and simulator to visualize the pressure distribution on the joint contact surfaces under loading condition during walking cycle. The compressive loading curve was the major cause for the contact pressure distribution and its center move in a cycle as to a flexion angie. In conclusion, this system can be used to evaluate to the geometric interaction of femoral and tibial design due to a measured mechanical function such as a contact pressure, contact area and a motion of a loading center.

Development of Simulator for Performance estimation of Above-Knee Prosthesis (대퇴의족 성능평가를 위한 시뮬레이터의 개발)

  • 오명환;송호진;윤용산;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.432-432
    • /
    • 2000
  • The above-Knee Prosthesis has been used by the handicapped person and become a important part of their life. But uniform above-knee prosthesis only increases inconvenience And so the tool that can estimate and help to design of suitable prosthesis for user need to be developed. The simulator developed in this research is composed of two part. One is hardware that can realize various walking motions. The other is software that can display and analyze the results of walking mot ion. Three motors constitute hardware of Simulator. Two motors are used to realize heap motion that need two degree of freedom and the rest one used to realize swing motion. Software of Simulator display results of three motor trajectories and walking mot ion of hardware using computer graphic. Therefore, The simulator developed in this research which is able to realize human gait and results are analyzed through simulation program at PC will be some help to design and produce of prosthesis suitable to user.

  • PDF

Determination of Total Knee Replacement Parameter by Simulation (시뮬레이션을 이용한 슬관절 수술 변수 결정)

  • Yoon Y.S.;Park S.H.;Lee S.H.;Choi K.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.881-887
    • /
    • 2005
  • A total knee replacement is an extremely 'position-sensitive' operation; a malposition or a malalignment of the components will lead to a breakage of the component, a fracture around the knee prosthesis, and the limitation of range of the motion, etc. In a conventional total knee replacement, surgeons have to select an appropriate prosthesis according to the shape of the surgical region. A wrong selection may give rise to side effects or to need re-operation. Nevertheless, it is so difficult to choose the most proper prosthesis out of various kinds of prosthesis. This paper presents a surgical planning system for the total knee replacement with an operation simulating method in order to determine the parameters for the total knee replacement operation. We select an alignment axis and a resection angle as major operation parameters in the total knee replacement operation, and introduce the method to determine the major operation parameters with the operation simulator we developed. The simulator is used to determine operation parameters for optimized operations, to select the most appropriate prosthesis, and to analyze the prospective problems of the operation.

  • PDF

A Total Knee Arthroplasty Simulation Using 3D Medical Images (인공 슬관절 전치환술 시뮬레이션을 위한 형상 모델링)

  • Seo Jeong-Woo;Jun Yong-Tae;Park Se-Hyung;Choi Kui-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.896-902
    • /
    • 2005
  • An orthopedic surgeon normally gets the operational parameters of total knee arthroplasty from medical images(CT, MRI). Anatomical axis, mechanical axis, the width and height of femur, or tibia are the most important parameters related with accomplishment of TKA. This paper presents a methodology of simulation that virtually operates TKA according to 2D medical images. Using this simulator, some important parameters for operation can be achieved before hand. The simulator provides the 3D computational model of a knee joint and then derives the proper size of implant corresponding to the joint. The whole process of TKA can be simulated such as clipping a knee joint, assembling the joint and its implants, visualizing all the operation steps, deriving some crucial parameters such as anatomical axis and cutting thickness, and predicting the result of TKA. Some examples are given and discussed to validate the methodology.

  • PDF

Control of an above-knee prosthesis using MR damper (MR 감쇠기를 이용한 무릎 관절 의족의 제어)

  • 김정훈;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.244-244
    • /
    • 2000
  • We proposed the above-knee prosthesis using rotary MR damper in which knee joint is semi-actively controlled by microprocessor. Dissipation torque in the knee joint can be controlled by the magnetic field which is induced by applying current to a solenoid, Tracking control of knee joint angle was tested by 3-DOF Leg simulator. The experimental results show that the proposed above-knee prosthesis system had good performance in swing phase tracking and repetitive controller in conjunction with a computed control law and PD control law, reduced RMS tracking error as the repetitions of tracking. Moreover, desired knee angle trajectory was generated based on the estimation of gait period with the gyro signal and the tracking control was performed.

  • PDF

Kinematical Analysis of Up-Down Motion in Ski Simulator (스키 시뮬레이터 업-다운 동작의 운동학적 분석)

  • Nam, Chang-Hyun;Woo, Byung-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.41-49
    • /
    • 2007
  • This study was to investigate the kinematical analysis using ski simulator. Twelve people(six skilled, six unskilled) participated in the experiment. Each phase of motion time was slight differences between the skilled group and the unskilled group but not significant difference in statistics. In displacement of vertical on COG(Center of Gravity), left and right down motion showed significant difference between group. In velocity of horizontal on COG, both left and right down motion showed significant difference between group, and up motion of between down motion showed significant difference. In displacement of angle on ankle, knee, hip joint almost showed significant difference between group. Almost in body position was lower skilled group than unskilled group.

Development of a Simulator for the biped-walking robot using the open inventor (Open Inventor를 이용한 이족보행로봇의 시뮬레이터의 개발)

  • 최형식;김영식;전대원;우정재;김명훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.296-299
    • /
    • 2001
  • We developed a motion capture system to get angle data of human joints in the walking mode. The motion capture system is a pair of leg-shape device, which is composed of three links with ankle, knee and pelvis joints. The sensors for measurement of the joint angle are potentiometers. We used an A/D converter to get digital data from joint angles, and which are used to simulate and coordinate the biped-walking robot developed in our laboratory. To simulate and analyze walking motion, animation based on three-dimension motion is performed using the open inventor software.

  • PDF

The Effect of the Heel Rest on the Lower Leg Muscle Activity and Fatigue During Repetitive Pedaling (자동차 페달 반복 사용 시 보조 발판이 하지근육 활동과 피로에 미치는 영향)

  • Kim, Jung-Yong;Seo, Kyung-Bae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.55-62
    • /
    • 2005
  • This study examined the effect of ergonomic heel rest that was designed for drivers who have physical handicap in the low leg muscles or have to drive prolonged hours with frequent foot pedaling. An experiment was designed to test the ergonomic heel rest with traditional foot pedal. Forty subjects participated in the experiment. Electromyography(EMG) was used to monitor the muscle activity and fatigue of right leg, and Electro-goniometer was used to measure the ranges of motions of the knee and ankle. A simulator of driver's seat was built for the experiment and the heel rest was installed on it. In order to examine the low muscle activity and range of motion, subjects used the foot pedal for 15 minutes repetitively for each experimental condition. Another 15 minutes test without the heel rest was also performed for comparison. The Root Mean Square(RMS) and Mean Power Frequency(MPF) Shift were used to quantify the level of muscle activity and local muscle fatigue. In results, statistically significant decreases of muscle activity and fatigue were found in all the low leg muscles. The range of motion of the knee and ankle joint also decreased when the heel rest was used. The mechanism of the heel rest effect was discussed in this study. This type of heel rest can be applied to real driving situation after ensuring the safety, or overcoming the psychological discomfort possibly due to unfamiliarity.

A Study on the Effectiveness of the Manufacture of Compensator and Setup Position for Total Body Irradiation Using Computed Tomography-simulator's Images (전산화 단층 모의치료기(Computed Tomography Simulator)의 영상을 이용한 TBI(Total Body Irradiation) 자세 잡이 및 보상체 제작의 유용성에 관한 고찰)

  • Lee Woo-Suk;Park Seong-Ho;Yun In-Ha;Back Geum-Mun;Kim Jeong-Man;Kim Dae-Sup
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.147-153
    • /
    • 2005
  • Purpose : We should use a computed tomography-simulator for the body measure and compensator manufacture process was practiced with TBI's positioning in process and to estimate the availability.,Materials and Methods : Patient took position that lied down. and got picture through computed tomography-simulator. This picture transmitted to Somavision and measured about body measure point on the picture. Measurement was done with skin, and used the image to use measure the image about lungs. We decided thickness of compensator through value that was measured by the image. Also, We decided and confirmed position of compensator through image. Finally, We measured dosage with TLD in the treatment department.,Results : About thickness at body measure point. we could find difference of $1{\sim}2$ cm relationship general measure and image measure. General measure and image measure of body length was seen difference of $3{\sim}4$ cm. Also, we could paint first drawing of compensator through the image. The value of dose measurement used TLD on head, neck, axilla, chest(lungs inclusion), knee region were measured by $92{\sim}98%$ and abdomen, pelvis, inquinal region, feet region were measured by $102{\sim}109%$.,Conclusion : It was useful for TBI's positioning to use an image of computed tomography-simulator in the process. There was not that is difference of body thickness measure point, but measure about length was achieved definitely. Like this, manufacture of various compensator that consider body density if use image is available. Positioning of compensator could be done exactly. and produce easily without shape of compensator is courted Positioning in the treatment department could shortened overall $15\{sim}20$ minute time. and reduce compensator manufacture time about 15 minutes.

  • PDF

Surface Tribology of Total Ankle Joint Replacement (인공발목관절의 표면 마모 특성)

  • Jeong, Yong-Hoon;Jung, Tae-Gon;Yang, Jae-Woong;Park, Kwang-Min;Lee, Su-Won
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.117-117
    • /
    • 2016
  • Total ankle replacement (TAR) is a visible option in the surgical treatment of degenerative or inflammatory diseases of ankle joint. it is attributed to the current TAR which has improvements in surgical technique, uncemented implant fixation and minimally constrained articulation. In the clinical result, they can show promised surgical result when compared to earlier attempts in TAR. However, TAR is still not as successful as total knee replacement (TKR) or total hip replacement (THR), it needs to be note that there are limitations in concerning of long term performance of TAR, the high failure rate still associated with wear of the PE (polyethylene) component that has related with their material property and surface roughness. The aim of this study was to introduce the tribology characteristics of total ankle joint prosthesis with one of TDR model which was fabricated to try multi-axis wear test as a region of motion in ankle joint. The wear specimen of TDR was prepared with Ti-6Al-4V alloy and UHMWPE (ultra-high molecular weight polyethylene) for tibia-talus and bearing component, respectively. A wear test was carried out using a Force 5 (AMTI, Massachusetts, US) wear simulator which can be allowed to move in three axis to flexion-extension ($+3^{\circ}{\sim}-6^{\circ}$), internal-external axial rotation (${\pm}5^{\circ}$), as well as sinusoidal compressive load (1.6 kN, R=10). All tests were performed following standard ISO 14243, wear rate was calculated with weight loss of UHMWPE bearing while the specimen has tested at certain cycles. As based on the preliminary results, wear rate of UHMWPE bearing was $7.9{\times}10^{-6}mg/cycles$ ($R^2=0.86$), calculated loss weight until $10^7cycles$ was 79 mg, respectively.

  • PDF