• 제목/요약/키워드: Kirchhoff equations

검색결과 59건 처리시간 0.023초

단상 유도전동기의 전류 및 토크 계산 기법 (Calculation of Bar Currents and Torque for Single Phase Induction Motor)

  • 김영선;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.867-869
    • /
    • 2002
  • A method for the time step analysis of single phase induction motors is proposed. The unknown variables in differential equations are the currents flowing through rotor bars. They are coupled with the distributed magnetic flux densities in the airgap instead of inductance matrix while applying Kirchhoff's and Faraday's induction laws. Two patterns for magnetic flux densities are necessary. One is given by ideal stator winding distribution. the other is produced by currents flowing a rotor bar with unit magnitude and is calculated by FEM. Formulated set of equations are solved for a simple three phase and single phase example model and the resultant speed torque curve is shown in this paper.

  • PDF

Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method

  • Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.35-48
    • /
    • 2018
  • In this paper, the response of a sandwich cylindrical shell over any sort of boundary conditions and under a general distributed static loading is investigated. The faces and the core are made of some isotropic materials. The faces are modeled as thin cylindrical shells obeying the Kirchhoff-Love assumptions. For the core material it is assumed to be thick and the in-plane stresses are negligible. The governing equations are derived using the principle of the stationary potential energy. Using harmonic differential quadrature method (HDQM) the equations are solved for deformation components. The obtained results primarily are compared against finite element results. Then, the effects of changing different parameters on the stress and displacement components of sandwich cylindrical shells are investigated.

비연성된 지배방정식을 이용한 각가속도를 갖는 회전원판의 동적 안정성 해석 (Dynamic Stability Analysis of a Spinning Disk with Angular Acceleration by Using the Uncoupled Governing Equations)

  • 최태영;정진태
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1363-1370
    • /
    • 2000
  • Dynamic stability of a flexible spinning disk with angular acceleration is considered. To avoid the coupling between the in-plane and out-of-plane displacements, the linearized strain-displacement relations are used in the Kirchhoff plate theory. The uncoupled governing equations are derived by using Hamilton's principle with considering the angular acceleration. Numerical tests show that existence of the angular acceleration makes a spinning disk dynamically unstable.

다단자 송전계통에서의 1선지락 고장시 고장점 표정 알고리즘 (A Fault Location Algorithm for a Single Line Ground Fault on a Multi-Terminal Transmission Line)

  • 강상희;노재근;권영진
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권2호
    • /
    • pp.121-133
    • /
    • 2003
  • This paper presents a fault location algorithm for a single phase-to-ground fault on 3-terminal transmission systems. The method uses only the local end voltage and current signals. Other currents used for the algorithm are estimated by current distribution factors and the local end current. Negative sequence current is used to remove the effect of load current. Five distance equations based on Kirchhoff's voltage law are established for the location algorithm which can be applied to a parallel transmission line having a teed circuit. Separating the real and imaginary parts of each distance equation, final nonlinear equations that are functions of the fault location can be obtained. The Newton-Raphson method is then applied to calculate the estimated fault location. Among the solutions, a correct fault distance is selected by the conditions of the existence of solution. With the results of extensive S/W and H/W simulation tests, it was verified that the proposed algorithm can estimate an accurate fault distance in a 154kV model system.

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri;Abbas Loghman;Mohammad Arefi
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.115-126
    • /
    • 2023
  • This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

직교이방성 박판 및 후판의 해석연구 (Study on the Analysis of Orthotropic Thin Plates and Orthotropic Thick Plates)

  • 박원태;최재진
    • 한국산학기술학회논문지
    • /
    • 제4권2호
    • /
    • pp.76-80
    • /
    • 2003
  • 본 연구에서는 직교이방성 박판 및 후판의 휨문제에 대한 해석결과를 제시하였다. 수치해석방법으로는 유한요소법을 사용하였으며, 직교이방성판 휨문제에 대한 지배방정식은 Kirchhoff가정에 의한 박판이론과 Mindlin 가정에 의한 후판이론을 이용하여 유도하였으며 판의 폭-두께비의 변화에 따른 해석결과를 비교 검토하였다.

  • PDF

Electro-elastic analysis of piezoelectric laminated plates

  • Zhao, Minghao;Qian, Caifu;Lee, S.W.R.;Tong, Pin;Suemasu, H.;Zhang, Tong-Yi
    • Advanced Composite Materials
    • /
    • 제16권1호
    • /
    • pp.63-81
    • /
    • 2007
  • Based on the Kirchhoff hypothesis of normal-remain-normal, the present work analyses piezoelectric laminated plates, wherein poled piezoelectric laminae are transversely isotropic and function as actuators. A quadric electric field is induced inside a piezoelectric lamina under a given applied voltage and mechanical bending. The governing equations for the piezoelectric laminated plate derived from the principle of virtual work in terms of the electric enthalpy have the same forms as those for a conventional composite laminated plate. We use rectangular sandwich plates of Al/PZT/Al and PZT/Al/PZT with four simply supported edges to demonstrate the prediction of the maximum bending stress in the PZT layer. The analytic solutions are verified by three-dimensional finite element analysis.

항공기 엔진 소음 전파에 대한 수치적 연구 (A Numerical Study on Radiation of Duct Internal Noise)

  • 정철웅;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.98-103
    • /
    • 2000
  • The cut-off is a unique feature associated with duct acoustics due to the presence of duct walls. Duct geometry effect on sound radiation is another issue of duct acoustics. The radiation of duct internal noise to ambient from duct open ends with various geometries is studied via numerical methods. The linearized Euler's equations in generalized curvilinear coordinates are solved by the DRP finite difference scheme. A number of accurate boundary conditions are used at boundaries for the computational domain to minimize the non-physical reflections. The far field sound pressure levels are computed by the Kirchhoff integration method. We investigate the cut off phenomana and duct geometry effects on sound radiation with numerical results.

  • PDF

On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory

  • Liu, Jinjian;Chen, Ling;Xie, Feng;Fan, Xueliang;Li, Cheng
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.257-274
    • /
    • 2016
  • The nonlocal static bending, buckling, free and forced vibrations of graphene nanosheets are examined based on the Kirchhoff plate theory and Taylor expansion approach. The nonlocal nanoplate model incorporates the length scale parameter which can capture the small scale effect. The governing equations are derived using Hamilton's principle and the Navier-type solution is developed for simply-supported graphene nanosheets. The analytical results are proposed for deflection, natural frequency, amplitude of forced vibration and buckling load. Moreover, the effects of nonlocal parameter, half wave number and three-dimensional sizes on the static, dynamic and stability responses of the graphene nanosheets are discussed. Some illustrative examples are also addressed to verify the present model, methodology and solution. The results show that the new nanoplate model produces larger deflection, smaller circular frequencies, amplitude and buckling load compared with the classical model.

쉘 구조물의 과도동적거동해석에 적용된 응력률들의 비교 (Comparison of Objective Stress Rates for Explicit Transient Shell Dynamics Analysis)

  • 하재선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.497-502
    • /
    • 2004
  • This paper presents applications of the objective stress rates to stress update algorithms for transient shell dynamic analysis within the context of explicit time integration. The hypo elasto-plastic materials are assumed in establishing constitutive equations. The derivation of the objective stress rates are investigated by use of the Lie derivative. Comparison results are given between the Kirchhoff and Cauchy stress formulation. The Jacobian determination algorithm proposed in this paper is presented in association with the Belytschko-Lin-Tsay shell theory. Several numerical examples are demonstrated including contact and non-contact examples, by which proposed algorithms are compared with respect to the accuracy and effectiveness.

  • PDF