• Title/Summary/Keyword: Kinetics of photocatalytic degradation

Search Result 29, Processing Time 0.024 seconds

Photocatalytic-Photochemical Reaction of Wastewater Dyes in aqueous Solution (염료폐수 용액의 광축매-광화학 반응)

  • 김삼혁;최칠남;정오진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.241-248
    • /
    • 1999
  • The photocatalytic decolorization and photodegradation of wastewater contamininated with dyes such as methyleneblue tetrahydrate(MBT), methyl orange(MO), phenol red(PR) and the mixed dyes have been studied using a batch reactor in the presence of aerotropic and titania. Degussa P25 titanium oxide was used as the photocatalyst and proved to be effective for the dyes-degradation when irradiated with UV-light source emitting the wavelength of 253.7 nm in the presence of air. In addition to removing the color from the wastewater, the photocatalytic reaction simultaneously reduced the COD and optical density which suggests that the dissolved organic compounds have been photooxidized. The reaction rate of disappearance of the dyes were measured as a function of the irradiation times. The photooxidative procedure of the aquatic solution have the first order reaction-kinetics. The rate constants were increased in the order of PR < MBT < $gL^{-1}-TiO_2$ powder were irradiated with the UV -light source.

  • PDF

Preparation of Nb2O5-Graphene Nanocomposites and Their Application in Photocatalytic Degradation of Organic Dyes (Nb2O5-Graphene나노복합체의 제조 및 유기염료 광촉매 분해반응의 응용성에 관한 연구)

  • Park, Hae Soo;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.330-335
    • /
    • 2014
  • Niobium pentoxide ($Nb_2O_5$) nanoparticles were synthesized using niobium (V) chloride and pluronic F108NF as the precursor and templating agent, respectively. The $Nb_2O_5$-graphene nanocomposites were placed in an electric furnace at $700^{\circ}C$ and calcined under Ar atmosphere for 2 h. The morphology, crystallinity, and photocatalytic degradation activity of the samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and UV-vis spectroscopy. The $Nb_2O_5$-graphene nanocomposites acted as a photocatalyst in the photocatalytic degradation of organic dyes under 254 nm UV light; the organic dyes used were methylene blue (MB), methyl orange (MO), rhodamine B (RhB), and brilliant green (BG). The photocatalytic degradation kinetics for the aforesaid dyes were determined in the presence of the $Nb_2O_5$-graphene nanocomposites.

Preparation of [C60]Fullerene-CoS2 Nanocomposites and Kinetics Study for Photocatalytic Degradation of Organic Dyes

  • Kim, Jae Jin;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • Nanosized cobalt disulfide ($CoS_2$) particles were synthesized with 0.08 M cobalt chloride hexahydrate ($CoCl_2{\cdot}6H_2O$) and 0.2 M sodium thiosulfate pentahydrate ($Na_2S_2O_3{\cdot}5H_2O$) dissolved in distilled water under microwave irradiation. $[C_{60}]Fullerene-CoS_2$ nanocomposites were prepared with nanosized $CoS_2$ particles and [$C_{60}$]fullerene as heated by $700^{\circ}C$ for 2 h in an electric furnace. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) identified the heated $[C_{60}]fullerene-CoS_2$ nanocomposites. Heated $[C_{60}]fullerene-CoS_2$ nanocomposites were investigated the activity of photocatalytic degradation as a catalyst in various organic dyes like acid yellow 23, methylene blue, methyl orange, and rhodamine B with ultraviolet light at 254 nm by UV-vis spectrophotometer.

Preparation of CdS-AC/TiO2 Composites Designed for a High Photonic Effect and their Photocatalytic Activity Under Visible Light

  • Park, Chong-Yeon;Choi, Jong-Geun;Ghosh, Trisha;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.433-438
    • /
    • 2011
  • In this study, CdS combined activated carbon/$TiO_2$ (CdS-AC/$TiO_2$) composites were prepared by a sol-gel method to improve the photocatalytic performance of $TiO_2$. These composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV-vis analysis. The photocatalytic activities were examined by the degradation of methylene blue (MB) under visible light irradiation. The photodegradation rate of MB under visible light irradiation reached 90.1% in 120 min. The kinetics of MB degradation was plotted alongside the values calculated from the Langmuir-Hinshelwood equation. The 0.2 CAT sample showed the best photocatalytic activity, which might be due to an increase in the photo-absorption effect by activated carbon and the cooperative effect of CdS.

Decolorization of Rhodamine B Using UV/$TiO_2$ System (UV/$TiO_2$ 시스템을 이용한 Rhodamine B의 색도 제거)

  • 박영식;나영수;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.59-64
    • /
    • 2002
  • The photocatalytic decolorization of the Rhodamine B (RhB) was studied using a UV/TiO$_2$ reactor. Yakuri titanium dioxide(anatase) was used as the suspended photocatalyst and proved to be effective for decolorization irradiated with UV light (254 mm). The photocatalyzed dioxide concentrations, light intensity and air flow rates. In 0.01 mM RhB, color could be completely photodegraded after 3 hours. Absorption spectrum of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the solution bulk : concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the break up of the chromopore. The optimum loaded titanium dioxide for the decolorization was 0.75 g/(equation omitted). The light intensity showed exponential decay with distance. The decay of light intensity of RhB solution showed different tendency from TiO$_2$. These results suggested that the photocatalytic decolorization of dyes may be available method for decolorizing in wastewater.

Photocatalytic Degradation of Fungicide Chlorothalonil by Mesoporous Titanium Oxo-Phosphate (Mesoporous Titanium Oxo-Phosphate에 의한 살균제 Chlorothalonil의 광분해)

  • Choi, Choong-Lyeal;Kim, Byung-Ha;Lee, Byung-Mook;Choi, Jyung;Rhee, In-Koo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.284-289
    • /
    • 2003
  • Titanium mesoporous materials have received increasing attention as a new photocatalyst in the field for photocatalytic degradation of organic compounds. The photocatalytic degradation of chlorothalonil by mesoporous titanium oxo-phoswhate (Ti-MCM) was investigated in aqueous suspension for comparison with $TiO_2$, (Degussa, P25) using as an effective photocatalyst of organic pollutants. Mesoporous form of titanium Phosphate has been prepared by reaction of sulfuric acid and titanium isopropoxide in the presence or n-hexadecyltrimethylammonium bromide. The XRD patterns of Ti-MCM are hexagonal phases with d-spacings of 4.1 nm. Its adsorption isotherm for chlorothalonil reached at reaction equilibrium within 60 min under dark condition with 28% degradation efficiency. The degradation ratio of chlorothalonil after 9 hours under the UV radiation condition (254 nm) exhibited 100% by Ti-MCM and 88% by $TiO_2$. However, these degradation kinetics in static state showed a slow tendency compared to that of stirred state because of a low contact between titanium matrices and chlorothalonil. Also, degradation efficiency of chlorothalonil was increased with decreasing initial concentration and with increasing pH of solution. As results of this study, it was clear that mesoporous titanium oxo-phosphate with high surface area and crystallinity could be used to photo- catalytic degradation of various organic pollutants.

A Study on the Photocatalytic Degradation of VOC over TiO2 Coated on Glass Bead (산화티탄 광촉매를 이용한 VOC 가스 처리효과에 관한 연구)

  • Yun, Seok-Yeong;No, Jun-Hyeong;Park, Sun-Je;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.328-334
    • /
    • 2000
  • The photocatalyst of $TiO_2$coated on glass bead was prepared from sol-gel method to remove the VOC (vola-tile organic compounds) by the photocatalytic reaction. The coated films were characterized by X-ray diffraction(XRD), specific surface area(BET), and scanning electron microscopy observation (SEM), The gas-phase photocatalytic degradation of trichloroethylene(TCE) and benzene with coated titanium dioxide on glass beads was in-vestigated using a fixed bed reactor. The degradation was calculated by the concentration difference with the retained on the reactor with aid of gas chromatography. At steady state, conversion yields were obtained for 80% of trichloroeth-vlene in 400 ppmv concentration and 65% on benzene in the range of concentration from 50 to 300 ppmv, respectively.

  • PDF

Photocatalytic and Sonophotocatalytic degradation of alachlor using different photocatalyst

  • Bagal, Manisha V.;Gogate, Parag R.
    • Advances in environmental research
    • /
    • v.2 no.4
    • /
    • pp.261-277
    • /
    • 2013
  • The degradation of alachlor has been investigated using sonolysis (US), photocatalysis (UV) and sonophotocatalysis (US/UV) using three photocatalyst viz. $TiO_2$ (mixture of anatase and rutile), $TiO_2$ (anatase) and ZnO. The effect of photocatalyst loading on the extent of degradation of alachlor has been investigated by varying $TiO_2$ (both types) loading over the range of 0.01 g/L to 0.1 g/L and ZnO loading over the range of 0.05 g/L to 0.3 g/L. The optimum loading of the catalyst was found to be dependent on the type of operation i.e., photocatalysis alone or the combined operation of sonolysis and photocatalysis. All the combined processes gave complete degradation of alachlor with maximum rate of degradation being obtained in the case of sonophotocatalytic process also showing synergistic effect at optimized loading of photocatalyst. About 50% to 60% reduction in TOC has been obtained using the combined process of sonophotocatalysis depending on the operating conditions. The alachlor degradation fitted first order kinetics for all the processes under investigation. It has been observed that the $TiO_2$ (mixtrure of anatase and rutile) is the most active photocatalyst among the three photocatalysts studied in the current work. The effect of addition of radical enhancers and scavengers on sonophotocatalytic degradation of alachlor has been investigated in order to decipher the controlling mechanism. The alachlor degradation products have been identified using LC-MS method.

Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO

  • Karunakaran, Chockalingam;Naufal, Binu;Gomathisankar, Paramasivan
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.108-114
    • /
    • 2012
  • Salicylic acid degrades at different rates under UV-A light on $TiO_2$, ZnO, CuO, $Fe_2O_3$, $Fe_3O_4$ and $ZrO_2$ nanocrystals and all the oxides exhibit sustainable photocatalysis. While ZnO-photocatalysis displays Langmuir-Hinshelwood kinetics the others follow first order on [salicylic acid]. The degradation on all the oxides enhance with illumination intensity. Dissolved oxygen is essential for the photodegradation. ZnO is the most efficient photocatalyst to degrade salicylic acid. Besides serving as the effective photocatalyst to degrade salicylic acid it also acts as a bactericide and inactivates E.coli even in absence of direct light.

Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles

  • Jung, Oh-Jin;Kim, Sam-Hyeok;Cheong, Kyung-Hoon;Li, W.;Saha, S. Ismat
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • TiO₂nanoparticles were synthesized using the metallorganic chemical vapor deposition process. Particles with and without metal ion dopants were obtained. X-ray photoelectron and energy dispersive X-ray spectroscopic measurements confirmed the stoichiometry of the TiO₂nanoparticles. X-ray diffraction patterns showed a polycrystalline anatase structure of TiO₂. Transmission electron microscopy revealed that these particles are of nanoscale dimensions. Exact particle size and size distribution analyses were carried out by dynamic light scattering. The average particle size was determined to be 22 nm. The nanosize particles provided large surface area for photocatalysis and a large number of free surface-charge carriers, which are crucial for the enhancement of photocatalytic activity. To improve the photocatalytic activity, metal ions, including transition metal ions $(Pd^{2+},\;Pt^{4+},\;Fe^{3+})$ and lanthanide ion $(Nd^{3+})$ were added to pure TiO₂nanoparticles. The effects of dopants on photocatalytic kinetics were investigated by the degradation of 2-chlorophenol under an ultraviolet light source. The results showed that the TiO₂nanoparticles with the metal ion dopants have higher photocatalytic activity than undoped TiO₂. The $Nd^{3+}$ ion of these dopant metal ions showed the highest catalytic activity. The difference in the photocatalytic activity with different dopants is related to the different ionic radii of the dopants.