• 제목/요약/키워드: Kinetics of photocatalytic degradation

검색결과 29건 처리시간 0.024초

염료폐수 용액의 광축매-광화학 반응 (Photocatalytic-Photochemical Reaction of Wastewater Dyes in aqueous Solution)

  • 김삼혁;최칠남;정오진
    • 한국환경과학회지
    • /
    • 제8권2호
    • /
    • pp.241-248
    • /
    • 1999
  • The photocatalytic decolorization and photodegradation of wastewater contamininated with dyes such as methyleneblue tetrahydrate(MBT), methyl orange(MO), phenol red(PR) and the mixed dyes have been studied using a batch reactor in the presence of aerotropic and titania. Degussa P25 titanium oxide was used as the photocatalyst and proved to be effective for the dyes-degradation when irradiated with UV-light source emitting the wavelength of 253.7 nm in the presence of air. In addition to removing the color from the wastewater, the photocatalytic reaction simultaneously reduced the COD and optical density which suggests that the dissolved organic compounds have been photooxidized. The reaction rate of disappearance of the dyes were measured as a function of the irradiation times. The photooxidative procedure of the aquatic solution have the first order reaction-kinetics. The rate constants were increased in the order of PR < MBT < $gL^{-1}-TiO_2$ powder were irradiated with the UV -light source.

  • PDF

Nb2O5-Graphene나노복합체의 제조 및 유기염료 광촉매 분해반응의 응용성에 관한 연구 (Preparation of Nb2O5-Graphene Nanocomposites and Their Application in Photocatalytic Degradation of Organic Dyes)

  • 박해수;고원배
    • Elastomers and Composites
    • /
    • 제49권4호
    • /
    • pp.330-335
    • /
    • 2014
  • Niobium pentoxide ($Nb_2O_5$) 나노입자는 niobium (V) chloride 와 pluronic F108NF를 전구체와 주형제로 사용하여 합성하였다. $Nb_2O_5$-graphene나노복합체는 아르곤 가스 분위기 전기로 조건에서 2시간 동안 $700^{\circ}C$로 가열하였다. 시료의 결정화도, 결정형태, 광촉매 분해 반응성은 X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy를 사용하여 측정하였다. $Nb_2O_5$-graphene나노복합체는 254 nm의 자외선 조건에서 유기염료 광촉매 분해 반응의 광촉매로 사용되었다. 유기염료는 methylene blue (MB), methyl orange (MO), rhodamine B (RhB), brilliant green (BG)이 사용되었다. 또한 $Nb_2O_5$-graphene나노복합체를 사용하여 유기염료 광촉매 분해 반응의 반응 속도를 결정하였다.

Preparation of [C60]Fullerene-CoS2 Nanocomposites and Kinetics Study for Photocatalytic Degradation of Organic Dyes

  • Kim, Jae Jin;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제51권1호
    • /
    • pp.49-55
    • /
    • 2016
  • Nanosized cobalt disulfide ($CoS_2$) particles were synthesized with 0.08 M cobalt chloride hexahydrate ($CoCl_2{\cdot}6H_2O$) and 0.2 M sodium thiosulfate pentahydrate ($Na_2S_2O_3{\cdot}5H_2O$) dissolved in distilled water under microwave irradiation. $[C_{60}]Fullerene-CoS_2$ nanocomposites were prepared with nanosized $CoS_2$ particles and [$C_{60}$]fullerene as heated by $700^{\circ}C$ for 2 h in an electric furnace. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) identified the heated $[C_{60}]fullerene-CoS_2$ nanocomposites. Heated $[C_{60}]fullerene-CoS_2$ nanocomposites were investigated the activity of photocatalytic degradation as a catalyst in various organic dyes like acid yellow 23, methylene blue, methyl orange, and rhodamine B with ultraviolet light at 254 nm by UV-vis spectrophotometer.

Preparation of CdS-AC/TiO2 Composites Designed for a High Photonic Effect and their Photocatalytic Activity Under Visible Light

  • Park, Chong-Yeon;Choi, Jong-Geun;Ghosh, Trisha;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.433-438
    • /
    • 2011
  • In this study, CdS combined activated carbon/$TiO_2$ (CdS-AC/$TiO_2$) composites were prepared by a sol-gel method to improve the photocatalytic performance of $TiO_2$. These composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV-vis analysis. The photocatalytic activities were examined by the degradation of methylene blue (MB) under visible light irradiation. The photodegradation rate of MB under visible light irradiation reached 90.1% in 120 min. The kinetics of MB degradation was plotted alongside the values calculated from the Langmuir-Hinshelwood equation. The 0.2 CAT sample showed the best photocatalytic activity, which might be due to an increase in the photo-absorption effect by activated carbon and the cooperative effect of CdS.

UV/$TiO_2$ 시스템을 이용한 Rhodamine B의 색도 제거 (Decolorization of Rhodamine B Using UV/$TiO_2$ System)

  • 박영식;나영수;안갑환
    • 한국환경보건학회지
    • /
    • 제28권5호
    • /
    • pp.59-64
    • /
    • 2002
  • The photocatalytic decolorization of the Rhodamine B (RhB) was studied using a UV/TiO$_2$ reactor. Yakuri titanium dioxide(anatase) was used as the suspended photocatalyst and proved to be effective for decolorization irradiated with UV light (254 mm). The photocatalyzed dioxide concentrations, light intensity and air flow rates. In 0.01 mM RhB, color could be completely photodegraded after 3 hours. Absorption spectrum of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the solution bulk : concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the break up of the chromopore. The optimum loaded titanium dioxide for the decolorization was 0.75 g/(equation omitted). The light intensity showed exponential decay with distance. The decay of light intensity of RhB solution showed different tendency from TiO$_2$. These results suggested that the photocatalytic decolorization of dyes may be available method for decolorizing in wastewater.

Mesoporous Titanium Oxo-Phosphate에 의한 살균제 Chlorothalonil의 광분해 (Photocatalytic Degradation of Fungicide Chlorothalonil by Mesoporous Titanium Oxo-Phosphate)

  • 최충렬;김병하;이병묵;최정;이인구;김장억
    • 한국환경농학회지
    • /
    • 제22권4호
    • /
    • pp.284-289
    • /
    • 2003
  • Mesoporous titanium oxo-phosphate(Ti-MCM)은 기존의 유기성 오염물질의 광분해제로 널리 이용되고 있는 $TiO_2$에 비해 표면적이 매우 넓은 장점이 있다. 그러므로 본 연구에서는 Ti-MCM에 의한 chlorothalonil의 흡착 및 광분해 특성을 $TiO_2$와 비교하였다. 합성된 Ti-MCM은 hexagonal 형태로 d-spacing이 4.1 nm이었다. 암조건에서 $TiO_2$에 의한 chlorothalonil의 흡착은 거의 일어나지 않았으나, Ti-MCM에 의한 흡착은 반응 1시간까지 25%로 급격히 증가하여 흡착평형에 도달하였다. UV조사 하에서 반응 9시간 후의 $TiO_2$와 Ti-MCM에 의한 chlorothalonil의 제거율은 각각 88%와 100%로 나타났다. 그러나 정치상태에서의 광분해 속도는 chlorothalonil과 Ti-MCM사이의 낮은 접촉에 의한 반응성의 감소로 느린 경향을 나타내었다. 또한 Ti-MCM에 의한 chlorothalonil의 분해효율은 용액의 초기 농도가 낮을수록, pH 7까지 반응용액의 pH가 높을수록 증가하였다.

산화티탄 광촉매를 이용한 VOC 가스 처리효과에 관한 연구 (A Study on the Photocatalytic Degradation of VOC over TiO2 Coated on Glass Bead)

  • 윤석영;노준형;박순제;이승호
    • 한국재료학회지
    • /
    • 제10권5호
    • /
    • pp.328-334
    • /
    • 2000
  • 산화티탄의 광촉매 반응을 이용하여 휘발성 유기화합물(VOC)를 분해제거 하기 위하여 산화티탄을 glass bead에 sol-gel법으로 코팅하였다. 코팅막의 물성은 XRD, BET, SEM을 통해 분헉하였으며, 산화티탄이 galss bead를 채운 실험실규모의 광촉매 반응기를 이용 VOC중 벤젠 및 TCE 가스의 광촉매반응에 의한 분해효율에 대해 연구 컴토하였다. 반응기내의 잔류시간에 따른 가스농도 차이를 gas chromatography로 비교 분석하여 그 분해효율을 계산하였다. 이와 같은 정적인 상태의 실험결과, 400ppmv의 농도의 TCE인 경우 80%의 분해효율을 얻었으며, 50ppmv에서 300ppmv 농도의 벤젠인 경우 65%의 분해효율을 얻었다.

  • PDF

Photocatalytic and Sonophotocatalytic degradation of alachlor using different photocatalyst

  • Bagal, Manisha V.;Gogate, Parag R.
    • Advances in environmental research
    • /
    • 제2권4호
    • /
    • pp.261-277
    • /
    • 2013
  • The degradation of alachlor has been investigated using sonolysis (US), photocatalysis (UV) and sonophotocatalysis (US/UV) using three photocatalyst viz. $TiO_2$ (mixture of anatase and rutile), $TiO_2$ (anatase) and ZnO. The effect of photocatalyst loading on the extent of degradation of alachlor has been investigated by varying $TiO_2$ (both types) loading over the range of 0.01 g/L to 0.1 g/L and ZnO loading over the range of 0.05 g/L to 0.3 g/L. The optimum loading of the catalyst was found to be dependent on the type of operation i.e., photocatalysis alone or the combined operation of sonolysis and photocatalysis. All the combined processes gave complete degradation of alachlor with maximum rate of degradation being obtained in the case of sonophotocatalytic process also showing synergistic effect at optimized loading of photocatalyst. About 50% to 60% reduction in TOC has been obtained using the combined process of sonophotocatalysis depending on the operating conditions. The alachlor degradation fitted first order kinetics for all the processes under investigation. It has been observed that the $TiO_2$ (mixtrure of anatase and rutile) is the most active photocatalyst among the three photocatalysts studied in the current work. The effect of addition of radical enhancers and scavengers on sonophotocatalytic degradation of alachlor has been investigated in order to decipher the controlling mechanism. The alachlor degradation products have been identified using LC-MS method.

Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO

  • Karunakaran, Chockalingam;Naufal, Binu;Gomathisankar, Paramasivan
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.108-114
    • /
    • 2012
  • Salicylic acid degrades at different rates under UV-A light on $TiO_2$, ZnO, CuO, $Fe_2O_3$, $Fe_3O_4$ and $ZrO_2$ nanocrystals and all the oxides exhibit sustainable photocatalysis. While ZnO-photocatalysis displays Langmuir-Hinshelwood kinetics the others follow first order on [salicylic acid]. The degradation on all the oxides enhance with illumination intensity. Dissolved oxygen is essential for the photodegradation. ZnO is the most efficient photocatalyst to degrade salicylic acid. Besides serving as the effective photocatalyst to degrade salicylic acid it also acts as a bactericide and inactivates E.coli even in absence of direct light.

Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles

  • Jung, Oh-Jin;Kim, Sam-Hyeok;Cheong, Kyung-Hoon;Li, W.;Saha, S. Ismat
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.49-54
    • /
    • 2003
  • TiO₂nanoparticles were synthesized using the metallorganic chemical vapor deposition process. Particles with and without metal ion dopants were obtained. X-ray photoelectron and energy dispersive X-ray spectroscopic measurements confirmed the stoichiometry of the TiO₂nanoparticles. X-ray diffraction patterns showed a polycrystalline anatase structure of TiO₂. Transmission electron microscopy revealed that these particles are of nanoscale dimensions. Exact particle size and size distribution analyses were carried out by dynamic light scattering. The average particle size was determined to be 22 nm. The nanosize particles provided large surface area for photocatalysis and a large number of free surface-charge carriers, which are crucial for the enhancement of photocatalytic activity. To improve the photocatalytic activity, metal ions, including transition metal ions $(Pd^{2+},\;Pt^{4+},\;Fe^{3+})$ and lanthanide ion $(Nd^{3+})$ were added to pure TiO₂nanoparticles. The effects of dopants on photocatalytic kinetics were investigated by the degradation of 2-chlorophenol under an ultraviolet light source. The results showed that the TiO₂nanoparticles with the metal ion dopants have higher photocatalytic activity than undoped TiO₂. The $Nd^{3+}$ ion of these dopant metal ions showed the highest catalytic activity. The difference in the photocatalytic activity with different dopants is related to the different ionic radii of the dopants.