• Title/Summary/Keyword: Kinetics Parameter

Search Result 132, Processing Time 0.03 seconds

Modeling on the Sorption Kinetics of Lead and Cadmium onto Natural Sediments (퇴적물에서의 납과 카드뮴의 흡착 동력학 모델링)

  • Kwak, Mun-Yong;Ko, Seok-Oh;Park, Jae-Woo;Jeong, Yeon-Gu;Shin, Won-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.450-461
    • /
    • 2006
  • In this study, sorption kinetics of lead (Pb) and cadmium (Cd) onto coastal sediments were investigated at pH 5.5 using laboratory batch adsorbers. Four different models: one-site mass transfer model (OSMTM), pseudo-first-order kinetic model (PFOKM) ,pseudo-second-order kinetic model (PSOKM) and two compartment first-order kinetic model (TCFOKM) were used to analyze the sorption kinetics. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM, PFOKM and PSOKM in describing sorption kinetics of Pb and Cd onto sediments. Most sorption of Pb and Cd was rapidly completed within the first three hours, followed by slow sorption in the subsequent period of sorption. All models predicted that the sorbed amount at the apparent sorption ($q_{e,s}$) equilibria increased as the CEC and surface area of the sediments increased, regardless of initial spiking concentration ($C_0$) and heavy metal and the sediment type. The sorption rate constant ($k_s,\;hr^{-1}$) in OSMTM also increased as the CEC and BET surface area increased. The rate constant of pseudo-first-order sorption ($k_{p1,s},\;hr^{-1}$) in PFOKM were not correlated with sediment characteristics. The results of PSOKM analysis showed that the rate constant of pseudo-second-order sorption ($k_{p2,s},\;g\;mmol^{-1}\;hr^{-1}$) and the initial sorption rate ($v_{o,s},\;mg\;g^{-1}\;hr^{-1}$) were not correlated with sediment characteristics. The fast sorption fraction ($f_{1,s}$) in TCFOKM increased as CEC and BET surface increased regardless of initial aqueous phase concentrations. The sorption rate constant of fast fraction ($k_{1,s}=10^{0.1}-10^{1.0}\;hr^{-1}$) was much greater than that of slow sorption fraction ($k_{2,s}=10^{-2}-10^{-4}\;hr^{-1}$) respectively.

Reaction Rate Analysis of Combustion for Indonesian Coal Char Applied by External/Internal Diffusion (외부 및 내부 확산을 적용한 인도네시아 석탄촤의 연소 반응율 분석)

  • Hwang, Chan-Won;Kim, Ryang-Gyoon;Ryu, Kwang-Il;Wu, Ze-Lin;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.133-140
    • /
    • 2014
  • The experiment was designed to compare the char combustion kinetics of pulverized Indonesia coals commonly utilized in Korea power plants. The reaction rate of coal char has been formulated using the external and internal effectiveness factors to describe the diffusion effect quantitatively. The Random Pore Model (RPM) was used for applying internal specific surface area as a function of carbon conversion ratio. Reaction rate was obtained from reaction time using the Wire Heating Reactor (WHR) which can heat and measure the char particle temperature at the same time. BET and TGA were used to obtain physical properties such as internal specific surface area and structural parameter. Three kinds of Indonesia Sub-bituminous coals "BARAMULTI, ENERGYMAN, AGM" were used in order to derive the activation energy and pre-exponential factor. The results of this study showed that the effect of internal diffusion than that of external diffusion is the dominant as comparison of kinetics was reflected in external and internal effectiveness factors. For three kinds of coal char, finally, activation energy of intrinsic kinetics indicates 110~118 kJ/mol.

Kinetics Determination of Quality Changes for the Optimization of Food Dehydration (식품건조공정 최적화에의 적용을 위한 품질 변화 Kinetics 결정)

  • Lee, Dong-Sun;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.272-279
    • /
    • 1988
  • Kinetics of ascorbic acid destruction and browning were evaluated by the dynamic test using actual drying data in order to apply in the optimization of food dehydration. Radish was chosen as a test material because it has many typical quality characteristics during drying. Radish was dried in the cabinet dryer with being measured in moisture, food temperature, ascorbic acid and browning. Using moisture and temperature history, proposed kinetic model was integrated and parameters of the model were searched by the iteration scheme to show minimum discrepancy between predicted and experimental data. Ascorbic acid destruction and browning were represented by first and zero order reaction respectively. Arrhenius equation was used to describe temperature dependence. Several mathematical functions of moisture dependence were compared in the model simplicity and residual sum of square. Attained kinetic models were analyzed as functions of temperature and moisture. Rate of ascorbic acid destruction was low at high moisture content, increased with moisture decrease to show a maximum at the moisture of $9{\sim}12g/g$ dry solid, and then decreased up to full dryness. Browning rate increased with moisture decrease to show a sharp maximum at $4{\sim}6g/g$ dry solid and decreased with further moisture decrease.

  • PDF

Kinetics and Mechanism of Anilinolyses of Ethyl Methyl, Ethyl Propyl and Diisopropyl Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Hoque, Md. Ehtesham Ul;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3811-3816
    • /
    • 2013
  • Nucleophilic substitution reactions of ethyl methyl (2), ethyl propyl (4) and diisopropyl (7) chlorothiophosphates with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. A concerted mechanism is proposed based on the selectivity parameters. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are secondary inverse ($k_H/k_D=0.66-0.99$) with 2, primary normal and secondary inverse ($k_H/k_D=0.78-1.19$) with 4, and primary normal ($k_H/k_D=1.06-1.21$) with 7. The primary normal and secondary inverse DKIEs are rationalized by frontside attack involving hydrogen bonded, four-center-type transition state, and backside attack involving in-line-type transition state, respectively. The anilinolyses of ten chlorothiophosphates are examined based on the reactivity, steric effect of the two ligands, thio effect, reaction mechanism, DKIE and activation parameter.

Kinetics and Mechanism for Reactions of Substituted Phenacyl Bromides with Quinoline (치환 브롬화페나실과 퀴놀린과의 반응에 관한 반응속도론적 연구)

  • Kim, Chang-Suk;Hong, Soon-Yung
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.265-268
    • /
    • 1984
  • Rates of reactions of nine m-or p-substituted phenacyl bromides with quinoline in methanol were measured by an electric conductivity method. These reactions were found to proceed through an $S_N2$ path and were accelerated by both electron-donating and electron-withdrawing substituents. A plausible reaction mechanism for this observation was proposed. Some activation parameters for these reactions were also calculated.

  • PDF

MCCARD: MONTE CARLO CODE FOR ADVANCED REACTOR DESIGN AND ANALYSIS

  • Shim, Hyung-Jin;Han, Beom-Seok;Jung, Jong-Sung;Park, Ho-Jin;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.161-176
    • /
    • 2012
  • McCARD is a Monte Carlo (MC) neutron-photon transport simulation code. It has been developed exclusively for the neutronics design of nuclear reactors and fuel systems. It is capable of performing the whole-core neutronics calculations, the reactor fuel burnup analysis, the few group diffusion theory constant generation, sensitivity and uncertainty (S/U) analysis, and uncertainty propagation analysis. It has some special features such as the anterior convergence diagnostics, real variance estimation, neutronics analysis with temperature feedback, $B_1$ theory-augmented few group constants generation, kinetics parameter generation and MC S/U analysis based on the use of adjoint flux. This paper describes the theoretical basis of these features and validation calculations for both neutronics benchmark problems and commercial PWR reactors in operation.

탄화수소/산소 혼합기체가 채워진 관 내부를 전파하는 데토네이션 파의 해석과 가시화

  • Choe Jeong Yeol
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.29-36
    • /
    • 2004
  • A numerical study is carried out on the detonation wave propagation through a T-shaped flame tube, which represents a crucial part of the combustion wave ignition (CWI) system aimed for simultaneous ignition of multiple combustion chambers by delivering detonation waves. The formulation includes the Euler equations and an induction-parameter model. The reaction rate is treated based on a chemical kinetics database obtained from a detailed chemistry mechanism. A second-order implicit time integration and a third-order TVD algorithm are Implemented to solve the theoretical model numerically. A total of more than two-million grid points are used to provide direct insight into the dynamics of the detonation wave. Several important phenomena including detonation wave propagation, degeneration, and re-initiation are carefully examined. Information obtained can be effectively used to facilitate the design and optimization of the flame tubes of CWI systems.

  • PDF

Nondimensional Analysis of Periodically Unstable Shock-Induced Combustion (주기적 불안정성을 가지는 충격파 유도 연소의 무차원 해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.41-49
    • /
    • 1996
  • A numerical study is conducted to investigate the periodically unstable shock induced combustion around blunt bodies in stoichiometric hydrogen-air mixtures. Euler equations are spatially discretized by upwind-biased third order scheme and temporally integrated by Runge-Kutta method. Chemistry model used in this study involves 8 elementary kinetics steps and 7 species. At a constant Mach number, the effects of projectile size, inflow pressure and inflow temperature are examined with Lehr#s experimental condition as a reference. In addition to oscillation frequency, characteristic distances and time averaged values are found from the result to find an relation with dimensionless parameters. As a result, it is found that the effects of inflow pressure and body size are very similar and $Damk{\ddot{o}}hler$ number plays an important role in determining the instability characteristics.

  • PDF

Analysis of activation, ohmic, and concentration losses in hydrogen fuelled PEM fuel cell

  • Rohan Kumar;K.A Subramanian
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.253-264
    • /
    • 2022
  • This paper deals with the effects of design (active area, current density, membrane conductivity) and operating parameters (temperature, relative humidity) on the performance of hydrogen-fuelled proton exchange membrane (PEM) fuel cell. The design parameter of a PEM fuel cell with the active area of the single cell considered in this study is 25 cm2 (5 × 5). The operating voltage and current density of the fuel cell were 0.7 V and 0.5 A/cm2 respectively. The variations of activation voltage, ohmic voltage, and concentration voltage with respect to current density are analyzed in detail. The membrane conductivity with variable relative humidity is also analyzed. The results show that the maximum activation overpotential of the fuel cell was 0.4358 V at 0.21 A/cm2 due to slow reaction kinetics. The calculated ohmic and concentrated overpotential in the fuel cell was 0.01395 V at 0.76 A/cm2 and 0.027 V at 1.46 A/cm2 respectively.

Modeling and Optimization of High Strength Wastewater Treatment Using the Electro Oxidation Process (전기산화공법을 이용한 고농도폐수 처리공정의 모델링 및 최적화)

  • Lee, Hongmin;Lee, Sangsun;Hwang, Sungwon;Jin, Dongbok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.340-349
    • /
    • 2016
  • Electro oxidation system was designed in this study for the reduction of COD (Chemical Oxygen Demand) from high-strength wastewater, produced during refinery turnaround period. First, BDD (Boron Doped Diamond) electrode was synthesized and electro oxidation system of actual industrial wastewater was developed by adopting the synthesized BDD electrode. The experiments were carried out under various operating conditions under certain range of current density, pH, electrolyte concentration and reaction time. Secondly, reaction kinetics were identified based on the experimental results, and the kinetics were embedded into a genetic mathematical model of the electro oxidation system. Lastly, design and operating parameters of the process were optimized to maximize the efficiency of the pretreatment system. The coefficient of determination ($R^2$) of the model was found to be 0.982, and it proved high accuracy of the model compared with experimental results.