Modeling on the Sorption Kinetics of Lead and Cadmium onto Natural Sediments

퇴적물에서의 납과 카드뮴의 흡착 동력학 모델링

  • Kwak, Mun-Yong (Department of Environmental Engineering, Kyungpook National University) ;
  • Ko, Seok-Oh (Department of Civil Engineering, Kyunghee University) ;
  • Park, Jae-Woo (Department of Civil Engineering, Hanyang University) ;
  • Jeong, Yeon-Gu (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Shin, Won-Sik (Department of Environmental Engineering, Kyungpook National University)
  • Published : 2006.12.30

Abstract

In this study, sorption kinetics of lead (Pb) and cadmium (Cd) onto coastal sediments were investigated at pH 5.5 using laboratory batch adsorbers. Four different models: one-site mass transfer model (OSMTM), pseudo-first-order kinetic model (PFOKM) ,pseudo-second-order kinetic model (PSOKM) and two compartment first-order kinetic model (TCFOKM) were used to analyze the sorption kinetics. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM, PFOKM and PSOKM in describing sorption kinetics of Pb and Cd onto sediments. Most sorption of Pb and Cd was rapidly completed within the first three hours, followed by slow sorption in the subsequent period of sorption. All models predicted that the sorbed amount at the apparent sorption ($q_{e,s}$) equilibria increased as the CEC and surface area of the sediments increased, regardless of initial spiking concentration ($C_0$) and heavy metal and the sediment type. The sorption rate constant ($k_s,\;hr^{-1}$) in OSMTM also increased as the CEC and BET surface area increased. The rate constant of pseudo-first-order sorption ($k_{p1,s},\;hr^{-1}$) in PFOKM were not correlated with sediment characteristics. The results of PSOKM analysis showed that the rate constant of pseudo-second-order sorption ($k_{p2,s},\;g\;mmol^{-1}\;hr^{-1}$) and the initial sorption rate ($v_{o,s},\;mg\;g^{-1}\;hr^{-1}$) were not correlated with sediment characteristics. The fast sorption fraction ($f_{1,s}$) in TCFOKM increased as CEC and BET surface increased regardless of initial aqueous phase concentrations. The sorption rate constant of fast fraction ($k_{1,s}=10^{0.1}-10^{1.0}\;hr^{-1}$) was much greater than that of slow sorption fraction ($k_{2,s}=10^{-2}-10^{-4}\;hr^{-1}$) respectively.

본 연구에서는 pH 5.5에서 연안퇴적물내 납과 카드뮴의 흡착 동력학을 실험실규모의 회분식 반응기를 이용하여 조사하였다. 4종류의 모델: 단일영역 물질전달모델 (one-site mass transfer model, OSMTM), 겉보기 1차속도모델 (pseudo-first-order kinetic model, PFOKM), 겉보기 2차속도모델 (pseudo-second-order kinetic model, PSOKM)과 두영역 1차속도모델 (two compartment first-order kinetic model, TCFOKM)을 사용하여 흡착속도를 분석하였다. 관련된 모델매개변수의 수에서 기대되듯이 변수가 3개인 TCFOKM이 변수가 2개인 OSMTM, PFOKM, PSOKM 보다 흡착속도를 더 잘 표현할 수 있었다. 납과 카드뮴의 대부분의 흡착은 초기 3시간 이내에 빠르게 완료되었으며, 이후 기간 동안은 느린 흡착이 이루어졌다. 모든 모델에서 겉보기 흡착평형농도($q_{e,s}$)는 퇴적물의 양이온 교환능 (CEC)과 표면적이 증가함에 따라 증가하는 것으로 예측되었으며, 이는 초기 중금속 투여 농도와 중금속 및 퇴적물의 형태와 무관하였다. OSMTM에서의 흡착속도 상수 ($k_s,\;hr^{-1}$)는 퇴적물의 CEC와 표면적이 증가함에 따라 증가하였다. PFOKM의 겉보기 1차흡착속도상수 ($k_{p1,s},\;hr^{-1}$)는 퇴적물의 특성과 관련이 없었다. PSOM 분석결과 겉보기 2차흡착속도상수 ($k_{p2,s},\;g\;mmol^{-1}\;hr^{-1}$)와 초기흡착속도 ($v_{o,s},\;mg\;g^{-1}\;hr^{-1}$)는 퇴적물의 특성과 연관되지 않았다. TCFOKM의 빠른 흡착영역의 분율($f_{1,s}$)은 수용액상의 초기농도와는 무관하게 퇴적물의 CEC와 표면적이 증가함에 따라 증가하였다. 빠른 부분에서의 흡착속도 상수 ($k_{1,s}=10^{0.1}-10^{1.0}\;hr^{-1}$)는 느린 부분에서의 흡착속도 상수 ($k_{2,s}=10^{-2}-10^{-4}\;hr^{-1}$)보다 훨씬 더 큰 것으로 나타났다.

Keywords

References

  1. Baeyens, B. and M.H. Bradbury. 1997. A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part I: Titration and sorption measurements. J. Contam. Hydrol. 27: 199-222 https://doi.org/10.1016/S0169-7722(97)00008-9
  2. Bartal, A., D.L. Sparks, J.D. Pesek and S. Feigenbaum. 1990. Analyses of adsorptionkinetics using a stirred-flow chamber. 1. Theory and critical tests. Soil Sci. Soc. Am. J. 54: 1273-1278 https://doi.org/10.2136/sssaj1990.03615995005400050012x
  3. Ciffroy, P., J.-M. Garnier and M.K. Pham. 2001. Kinetics of the adsorption and desorption of radionuclides of Co, Mn, Cs, Fe, Ag and Cd in freshwater systems experimental and modelling approaches. J. Environ. Radioact. 55: 71-91 https://doi.org/10.1016/S0265-931X(01)00026-1
  4. Connaughton, D.F., J.R. Stedinger, L.W. Lion and M.L. Shuler, 1993. Description of timevarying desorption kinetics: release of naphthalene from contaminated soils. Environ. Sci. Technol. 27: 2397-2403 https://doi.org/10.1021/es00048a013
  5. Cornellison, G., K.A. Hassell, P.C.M. van Noorst, R. Kraaij, P.J. van Erkeren, C. Dijkema, P.A. de Jager and H.A.J. Govers. 1997a. Slow desorption of PCBs and chlorobenzenes from soils and sediments: Relations with sorbent and sorbate characteristics. Env. Poll. 108: 69-80
  6. Cornellison, G., H. Rigterink, B.A. Vrind, D.Th.E.M. ten Hulscher, M.M.A. Ferdinary and P.C.M. van Noorst. 1997b. Two-stage desorption kinetics and in situ partitioning of hexachlorobenzene and dichlorobenzenes in a contaminated sediment. Chemosphere 35: 2405-2416 https://doi.org/10.1016/S0045-6535(97)00290-7
  7. Dang, Y.P., R.C. Dalal, D.G. Edwards and K.G. Tiller. 1994. Kinetics of zinc desorption from vertisols. Soil Sci. Soc. Am. J. 58: 1392-1399 https://doi.org/10.2136/sssaj1994.03615995005800050016x
  8. Ford, R.G., A.C. Scheinost, K.G. Scheckel and D.L. Sparks. 1999. The link between clay mineral weathering and the stabilization of Ni surface precipitates. Environ. Sci. Technol. 33: 3140-3144 https://doi.org/10.1021/es990271d
  9. Ford, R.G., A.C. Scheinost and D.L. Sparks. 2001. Frontiers in metal sorptin/precipitation mechanism on soil mineral surfaces, Adv. Agron. 74: 41- 62 https://doi.org/10.1016/S0065-2113(01)74030-8
  10. Garnier, J.-M., P. Ciffroy and L. Benyahya, 2006. Implications of short and long term 30 days sorption on the desorption kinetic of trace metals associated with river suspended matter. Sci. Total Environ. 366: 350-360 https://doi.org/10.1016/j.scitotenv.2005.07.015
  11. Ho, Y. and G. McKay. 2000. The kinetics of sorption of divalent metal ions onto sphagnum peat moss. Water Res. 34: 735-742 https://doi.org/10.1016/S0043-1354(99)00232-8
  12. Kim, J.-H., W.S. Shin, Y.-H. Kim, S.J. Choi, W.-K. Jo and D.-I. Song. 2005. Sorption and Desorption kinetics of chlorophenols in hexadecyltrimethyl ammonium-montmorillonites and their model analysis. Kor. J. Chem. Eng. 22: 857-864 https://doi.org/10.1007/BF02705665
  13. Koschinsky, A., U. Fritsche and A. Winkler. 2001. Sequential leaching of Peru Basin surface sediment for the assessment of aged and fresh heavy metal associations and mobility. Deep-Sea Res. II 48: 3683-3699 https://doi.org/10.1016/S0967-0645(01)00062-5
  14. Kuo, S. and D.S. Mikkelsen. 1980. Kinetics of zinc desorption from soils. Plant Soil 56: 355-364 https://doi.org/10.1007/BF02143030
  15. Li, D., S. Huang, W. Wang and A. Peng. 2001. Study on the kinetics of Cerium (III) adsorption-desorption on different soils of China. Chemosphere 44: 663-669 https://doi.org/10.1016/S0045-6535(00)00357-X
  16. Liu, C., J.M. Zachara, S.C. Smith, J.P. McKinley and C.C. Ainsworth, 2003. Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA. Geochim. Cosmochim. Acta 67: 2893- 2912 https://doi.org/10.1016/S0016-7037(03)00267-9
  17. Martinez, C.E., A.R. Jacobson and M.B. McBride. 2003. Aging and temperature effects on DOC and elemental release from a metal contaminated soil. Env. Poll. 122: 135-143 https://doi.org/10.1016/S0269-7491(02)00276-2
  18. McLaren, R.G., C.A. Backes, A.W. Rate, and R.S. Swift, 1998. Cadmium and cobalt desorptio nkinetics from soil clays: Effect of sorption period. Soil. Sci. Soc. Am. J. 62: 332-337 https://doi.org/10.2136/sssaj1998.03615995006200020006x
  19. Millward, G.E. and Y.P. Liu. 2003. Modelling metal desorption kinetics in estuaries. Sci Total Environ. 314-316: 613-623
  20. Mustaba, G., R.S. Kookana and B. Singh. 2006. Desorption of cadmium from goethite: Effects of pH, temperature and aging. Chemosphere 4: 856-865
  21. Nelson, D.W. and L.E. Sommers. 1996. Total Carbon, Organic Carbon, and Organic Matter, In: Methods of Soil Analysis Part 3: Chemical Methods (D.L. Sparks, ed.). Soil Science Society of America, American Society of Agronomy, MD, WI, USA
  22. Nzengung, V.A., P. Nkedi-Kizza, R.E. Jessup and E.A. Voudrias. 1997. Organic cosolvent effects on sorption kinetics of hydrophobic organic chemicals by organoclays. Environ. Sci. Technol. 31: 1470- 1475 https://doi.org/10.1021/es960720z
  23. Opdyke, D.R. and R.C. Loehr. 1999. Determination of chemical release rates from soil: Experimental design. Environ. Sci. Technol. 33: 1193-1199 https://doi.org/10.1021/es9806074
  24. Redeker, E.S., L. Bervoets and R. Blust. 2004. Dynamic model for the accumulation of cadmium and zinc from water and sediment by the aquatic oligochaete, Tubifex tubifex, Environ. Sci. Technol. 38: 6193-6220 https://doi.org/10.1021/es0496470
  25. Rupa, T.R., K.P. Tomar, D.D. Reddy and A.S. Rao. 2000. Time-dependent zinc desorption in soils. Commun. Soil Sci. Plant Anal. 31: 2547-2563 https://doi.org/10.1080/00103620009370608
  26. Scheidegger, A.M. and D.L. Sparks, 1996. Kinetics of the formation and the dissolution of nickel surface precipitates on pyrophyllite. Chem. Geol. 132, 157-164 https://doi.org/10.1016/S0009-2541(96)00051-4
  27. Scheinost, A.C., S. Abend, K.I. Pandya and D.L. Sparks. 2001. Kinetic controls on Cu and Pb sorption by ferrihydrite. Environ. Sci. Technol. 35: 1090-1096 https://doi.org/10.1021/es000107m
  28. Selim, H.M. and M.C. Amacher. 1988. A 2nd-order kinetic approach for modeling solute retention and transport in soils. Water Resour. Res. 24: 2061-2075 https://doi.org/10.1029/WR024i012p02061
  29. Selim, H.M. 1992. Modeling the Transport and Retention of Inorganics in Soils; In: Advances in Agronomy Vol. 47 (D.L. Sparks, ed.). Academic Press, New York, pp. 331-384
  30. Selim, H.M., L. Ma and H. Zhu. 1999. Predicting solute transport in soils: second-order twosite models. Soil Sci. Soc. Am. J. 63: 768-777 https://doi.org/10.2136/sssaj1999.634768x
  31. Shi, Z., D.M. Di Toro, H.E. Allen and A.A. Ponizovsky. 2005. Modeling kinetics of Cu and Zn release from soils. Environ. Sci. Technol. 39: 4562-4568 https://doi.org/10.1021/es048554f
  32. Skopp, J. and D. McCallister. 1986. Chemical-kinetics from a thin disk flow system-theory. Soil Sci. Soc. Am. J. 50: 617-622 https://doi.org/10.2136/sssaj1986.03615995005000030015x
  33. Sparks, D.L. 1989. Kinetics of Soil Chemical Processes. Academic Press: San Diego, CA, USA
  34. Strawn, D.G. and D.L. Sparks. 2000. Effects of soil organic matter on the kinetics and mechanisms of Pb (II) sorption and desorption in soil. Soil Sci. Soc. Am. J. 64: 144-156 https://doi.org/10.2136/sssaj2000.641144x
  35. Sumner, M.E. and W.P. Miller. 1996. Cation exchange capacity and exchange coefficients. In: Methods of Soil Analysis. Part 3. Chemical Methods (D.L. Sparks, ed.). Soil Science Society of America, Madison, WI, USA
  36. U.S. EPA. 2003. Method 3051: Microwave assisted acid digestion of sediments, sludges, soils, and oils. In: Test Methods for the Evaluation of Solid Waste: Laboratory Manual Physical Chemical Methods. SW 846, Office of Solid Waste, Washington, DC, USA
  37. U.S. EPA. 2003. Method 9081: Cation-exchange capacity (sodium acetate). In: Test Methods for the Evaluation of Solid Waste: Laboratory Manual Physical Chemical Methods. SW 846, Office of Solid Waste, Washington, DC, USA
  38. Yang, J.Y., X.E. Yang, Z.L. He, G.C. Chen, J.L. Shentu and T.Q. Li. 2004. Adsorptiondesorption characteristics of lead in variable charge soils. J. Environ. Sci. Health, Part A. 39: 1949-1967 https://doi.org/10.1081/ESE-120039367