• Title/Summary/Keyword: Kinetic resolution

Search Result 95, Processing Time 0.02 seconds

Enantioselective Phenolic Kinetic Resolution of Epoxides Catalyzed by New Chiral Salen Complexes (새로운 구조의 키랄 살렌 촉매상에서 페놀유도체에 의한 에폭사이드의 광학선택적 개환반응)

  • Rahul, B. Kawthekar;Lee, Kwang-Yeon;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.630-635
    • /
    • 2007
  • New chiral Co-salen complexes with one $C_3-^tBu$ group in the structure have been synthesized and applied as a chiral catalyst. A dimeric chiral salen having aluminum group metal salts such as $AlCl_3$ displayed very high catalytic reactivity and enantioselectivity for the asymmetric ring opening of epoxides to synthesize optically pure ${\alpha}$-aryloxy alcohols via phenolic kinetic resolution. The salen complexes immobilized on the inorganic support were also used as effective catalysts in that reaction. The identity of metal salts in the new chiral salen complex has proved to be important in the enantioselective reactions.

Epoxide Hydrolase-catalyzed Hydrolytic Kinetic Resolution for the Production of Chiral Epoxides (에폭사이드 가수분해효소에 의한 동력학적 가수분해반응을 이용한 광학활성 에폭사이드 생산)

  • 이은열
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.321-325
    • /
    • 2002
  • Chiral epoxides are valuable intermediates for the asymmetric synthesis of enantiopure bioactive compounds. Microbial epoxide hydrolases (EHs) are newly discovered enzymes and versatile biocatalysts for the preparation of chiral epoxides by enantioselective hydrolysis of cheap and easily available racemic epoxide substrates. EHs are commercially potential biocatalysts due to their characteristics such as high enantioselectivity, cofactor-independent catalysis, and easy-to-Prepare catalysts. In this Paper, recent progresses in biochemistry and molecular biology of EH and developments of novel reaction systems are reviewed to evaluate the commercial feasibility of EH-catalyzed hydrolytic kinetic resolution for the production of chiral epoxides.

Solid Bases as Racemization Catalyst for Lipase-catalyzed Dynamic Kinetic Resolution of Naproxen 2,2,2-Trifluoroethyl Thioester (리파아제에 의한 나프록센 2,2,2-트리플로로에틸 씨오에스터의 Dynamic Kinetic Resolution을 위한 라세미화 촉매로서의 고체 염기)

  • 김상범;원기훈;문상진;김광제;박홍우
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.215-220
    • /
    • 2004
  • A variety of solid bases such as inorganic bases, basic anion exchange resins, and resin-bound bases were tested as a catalyst for racemization of (S)-naproxen 2,2,2-trifluoroethyl thioester in isooctane at 45$^{\circ}C$. Among the various bases, DIAIOM WA30, which is a weakly basic anion exchange resin with a tertiary amine based on a highly porous type styrene-divinylbenzene copolymer, showed the highest catalytic activity. The second-order interconversion constant of DIAION WA30 was 8.6${\times}$10$\^$-4/ mM$\^$-1/h$\^$-1/ and about 3 times higher than that of trioctylamine under the same conditions. The rate of DIAION WA30-catalyzed racemization decreased with increasing an amount of water added to the reaction medium. Lipase-catalyzed kinetic resolution of racemic naproxen 2,2,2-trifluoroethyl thioester was successfully carried out under in situ racemization of substrate with DIAION WA30 in isooctane at 45$^{\circ}C$. More than 60% conversion and 99% enantiomeric excess for the desired (S)-naproxen product were obtained. Furthermore, such a solid base catalyst could be easily separated and reused in contrast to trioctylamine.

Effects of Impact Velocity on Crystallization and Activation Energy of Cu-based Bulk Metallic Glasses in Kinetic Spray Coating (저온 분사 코팅 공정에서 충돌속도에 따른 CuNiTiZr 벌크 비정질 소재의 활성화 에너지와 결정화 거동 분석)

  • Yoon, Sang-Hoon;Bae, Gyu-Yeol;Kim, Jung-Hwan;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, nanocrystallization of CuNiTiZr bulk metallic glass (BMG) subjecting to a kinetic spraying, dependent on impact velocity, was investigated by numerical and experimental approaches. The crystallization fraction and nucleation activation energy of initial feedstock and as-deposited coating were estimated by DSC and Kissinger method, respectively. The results of numerical modeling and experiment showed that the crystalline fraction and nucleation activation energy in BMG coatings were depended on kinetic energy of incident particle. Upon impact, the conversion of particle kinetic energy leads to not only decreasing free energy barrier but also increasing the driving force for an amorphous to crystalline phase transformation. The nanocrystallization of BMGs is associated with the strain energy delivered by a plastic deformation with a high strain rate.

Dynamic Kinetic Resolutions and Asymmetric Transformations by Enzyme-Metal Combo Catalysis

  • Kim, Mahn-Joo;Ahn, Yang-Soo;Park, Jai-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.515-522
    • /
    • 2005
  • Enzyme-metal combo catalysis is described as a useful methodology for the synthesis of optically active compounds. The key point of the method is the use of enzyme and metal in combination as the catalysts for the complete transformation of racemic substrates to single enantiomeric products through dynamic kinetic resolution (DKR). In this approach, enzyme acts as an enantioselective resolving catalyst and metal does as a racemizing catalyst for the efficient DKR. Three kinds of enzyme-metal combinations - lipase-ruthenium, subtilisin-ruthenium, and lipase-palladium –have been developed as the catalysts for the DKRs of racemic alcohols, esters, and amines. The scope of the combination catalysts can be extended to the asymmetric transformations of ketones, enol acetates, and ketoximes via the DKRs. In most cases studied, enzyme-metal combo catalysis provided enantiomerically-enriched products in high yields.

Variability of Mesoscale Eddies in the Pacific Ocean Simulated by an Eddy Resolving OGCM of $1/12^{\circ}$

  • Yim B.Y.;Noh Y.;You S.H.;Yoon J.H.;Qiu B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.133-136
    • /
    • 2006
  • The mesoscale eddy field in the North Pacific Ocean, simulated by a high resolution eddy-resolving OGCM ($1/12^{\circ}C$ horizontal resolution), was analyzed, and compared with satellite altimetry data of TOPEX/Poseidon. High levels of eddy kinetic energy (EKE) appear near the Kurosho, North Equatorial Current (NEC), and Subtropical Countercurrent (STCC) in the western part of the subropical gyre. In particlure, it was found that the EKE level of the STCC has a well-defined annual cycle, but no distinct annual cycle of the EKE exists in any other zonal current of the North Pacific Ocean.

  • PDF