• Title/Summary/Keyword: Kinetic isotope

Search Result 145, Processing Time 0.02 seconds

Rate and Product Studies of 1-Adamantylmethyl Haloformates Under Solvolytic Conditions

  • Park, Kyoung-Ho;Lee, Yelin;Lee, Yong-Woo;Kyong, Jin Burm;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3657-3664
    • /
    • 2012
  • Reactions of 1-adamantylmethyl chloroformate ($1-AdCH_2OCOCl$, 1) and 1-adamantylmethyl fluoroformate ($1-AdCH_2OCOF$, 2) in hydroxylic solvents have been studied. Application of the extended Grunwald-Winstein (G-W) equation to solvolyses of 1 in a variety of pure and binary solvents indicates an addition-elimination pathway in the majority of the solvents except an ionization pathway in the solvents of relatively low nucleophilcity and high ionizing power. The solvolyses of 2 show an addition-elimination pathway in all of the mixed solvents. The leaving group effects ($k_F/k_{Cl}$), the kinetic solvent isotope effects (KSIEs, $k_{MeOH}/k_{MeOD}$), and the enthalpy and entropy of activation for the solvolyses of 1 and 2 were also calculated. The selectivity values (S) for each solvent composition are reported and discussed. These observations are compared with those previously reported for other alkyl haloformate esters.

Contamination Source Assessment of Groundwater Nitrate in a Complex Terrain (복잡한 지형에서 발생하는 지하수의 질산태 질소 오염원 평가)

  • Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.14-20
    • /
    • 2009
  • Classification of land uses and analysis of nitrogen isotope fractionation in groundwater nitrate were carried out to examine its contamination sources in Jeju province. ${\delta}^{15}N$ values of urea (hydrolyzed with urease), ammonium sulfate, compost, water from septic tank were -1.7, -5.8, +14.1, and +24.0‰, respectively. Urea, when it was directly distillated, showed -16.5‰. Based on these ${\delta}^{15}N$ values, sources of nitrate could be classified as originated from chemical fertilizers with ${\delta}^{15}N$ values below +5‰ and as from animal manure or municipal waste with ${\delta}^{15}N$ values over +10‰. Results of ${\delta}^{15}N$ analysis of 33 wells showed that most wells had the chemical fertilizers as their dominant contamination source. However, some wells were contaminated by other sources: animal wastes or municipal wastes. Some wells were also contaminated by the combined sources of nitrate. It was also demonstrated that ${\delta}^{15}N$ analysis could be a useful tool even in the case where no apparent contamination source is found.

A Kinetic Study on Solvolysis of Diphenyl Thiophosphorochloridate

  • Koh, Han-Joong;Kang, Suk-Jin;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.383-388
    • /
    • 2009
  • Rates of solvolyses of diphenyl thiophosphorochloridate ($(PhO)_2$PSCl, 1) in ethanol, methanol, and aqueous binary mixtures incorporating ethanol, methanol, acetone and 2,2,2-trifluoroethanol (TFE) are reported. For four representative solvents, studies were made at several temperatures and activation parameters were determined. The 30 solvents gave a reasonably precise extended Grunwald-Winstein plot, correlation coefficient (R) of 0.989. The sensitivity values (l = 1.29 and m = 0.64) of diphenyl thiophosphorochloridate ($(PhO)_2$PSCl, 1) were similar to those obtained for diphenyl phosphorochloridate ($(PhO)_2$POCl, 2), diphenylphosphinyl chloride ($Ph_2$POCl, 3) and diphenylthiophosphinyl chloride ($Ph_2$PSCl, 4). As with the previously studied of 3~4 solvolyses, an $S_N$ pathway is proposed for the solvolyses of diphenyl thiophosphorochloridate (1). The activation parameters, ${\Delta}H^{\neq}\;(=11.6{\sim}13.9\;kcal{\cdot}mol^{-1})\;and\;{\Delta}S^{\neq}\; (=\;-32.1\;{\sim}\;-42.7\;cal{\cdot}mol^{-1}{\cdot}K^{-1})$, were determined, and they were in line with values expected for an $S_N$2 reaction. The large kinetic solvent isotope effects (KSIE, 2.44 in MeOH/MeOD and 3.46 in $H_2O/D_2$O) are also well explained by the proposed $S_N$2 mechanism.

Solvent Effect on the Nature of the Metallamacrocycles Formed: Formation of Octanuclear and Dodecanuclear Manganese Metalladiazamacrocycles

  • John, Rohith P.;Lee, Kyung-Jin;Lee, Kyung-Jae;Park, Mi-Ra;Lah, Myoung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2009-2014
    • /
    • 2007
  • The aminolysis of diphenyl thiophosphinic chloride (2) with substituted anilines in acetonitrile at 55.0 oC is investigated kinetically. Kinetic results yield large Hammett ρX (ρnuc = ?3.97) and Bronsted βX (βnuc = 1.40) values. A concerted mechanism involving a partial frontside nucleophilic attack through a hydrogen-bonded, four-center type transition state is proposed on the basis of the primary normal kinetic isotope effects (kH/kD = 1.0-1.1) with deuterated aniline (XC6H4ND2) nucleophiles. The natural bond order charges on P and the degrees of distortion of 42 compounds: chlorophosphates [(R1O)(R2O)P(=O)Cl], chlorothiophosphates [(R1O)(R2O)P(=S)Cl], phosphonochloridates [(R1O)R2P(=O)Cl], phosphonochlorothioates [(R1O)R2P(=S)Cl], chlorophosphinates [R1R2P(=O)Cl], and chlorothiophosphinates [R1R2P(=S)Cl] are calculated at the B3LYP/ 6-311+G(d,p) level in the gas phase.

Further Kinetic Studies of Solvolytic Reactions of Isobutyl Chloroformate in Solvents of High Ionizing Power Under Conductometric Conditions

  • Lim, Gui Taek;Lee, Yeong Ho;Ryu, Zoon Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.615-621
    • /
    • 2013
  • Solvolyses of isobutyl chloroformate (4) in 43 binary solvent mixtures including highly aqueous media, water, $D_2O$, $CH_3OD$, 2,2,2-trifluoroethanol (TFE) as well as aqueous 1,1,1,3,3,3-hexafluoro-isopropanol (HFIP) solvents were performed at $45^{\circ}C$, in order to further investigate the recent results of D'Souza, M. $J^1$. et al.; solvolyses of 4 are found to be consistent with the proposed mechanism ($Ad_E$). The variety of solvent systems was extended to comprise highly ionizing power solvent media ($Y_{Cl}$ > 2.7 excepted for aqueous fluorinated solvents and pure TFE solvent) to investigate whether a mechanistic change occurs as solvent compositions are varied. However, in case of 18-solvent ranges having aqueous fluorinated solvent systems (TFE-$H_2O$ and HFIP-$H_2O$) and/or having $Y_{Cl}$ > 2.7 solvent systems, the solvent effect on reactivity for those of 4 are evaluated by the multiple regression analysis as competition with $S_N2$ - type mechanism. And in pure TFE and 97 w/w % HFIP solvents with high $Y_{Cl}$ and weak $N_T$, these solvolyses are understood as reactions which proceed through an ionization ($S_N1$) pathway.

Kinetics and Mechanism of the Aminolysis of Benzenesulfonyl, Benzoyl and Benzyl Halides

  • Byung Choon Lee;Dong Sook Sohn;Ji Hyun Yoon;Sun Mo Yang;Ikchoon Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.621-625
    • /
    • 1993
  • Kinetic studies are conducted for the reactions of Y-benzoyl, Y-benzenesulfonyl and Y-benzyl halides with X-anilines in acetonitrile, and the transition state (TS) structures and their variations with substituents X and Y are discussed. The magnitude of the cross-interaction constants, $\rho$xy, is the largest and the inverse secondary kinetic isotope effect (SKIE), $k_H/k_D$ < 1.0, with deuterated aniline nucleophiles is the smallest for benzoyl fluoride reflecting the tightest TS for this compound. The SKIEs for sulfonyl halides are relatively large due to a relatively large, diffuse nature of the reaction center, S, causing weaker steric hindrance to the vibrations of the two N-H(D) bonds. For benzoyl and sulfonyl halides, the trends in $k_H/k_D$ and $Ir_XI$ variations with $\sigma$Y contradict each other, which is rationalized by the negative charge accumulation on the reaction center, CO and SO$_2$, causing inefficient transfer for the substrate with an electron donating substituent.

Acetylcholinesterase(AChE)-Catalyzed Hydrolysis of Long-Chain Thiocholine Esters: Shift to a New Chemical Mechanism

  • Jung, Dai-Il;Shin, Young-Ju;Lee, Eun-Seok;Moon, Tae-sung;Yoon, Chang-No;Lee, Bong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthiocholine(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. [Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477- 10482] The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.

Changes of carbon-13 Isotope of Dissolved Inorganic Carbon Within Low-pH CO2-rich Water during CO2 Degassing (pH가 낮은 탄산수의 CO2 탈기에 따른 용존탄소동위원소 변화)

  • Chae, Gitak;Yu, Soonyoung;Kim, Chan Yeong;Park, Jinyoung;Bang, Haeun;Lee, Inhye;Koh, Dong-Chan;Shinn, Young Jae;Oh, Jinman
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.3
    • /
    • pp.24-35
    • /
    • 2019
  • It is known that ${\delta}^{13}C_{DIC}$ (carbon-13 isotope of dissolved inorganic carbonate (DIC) ions) of water increases when dissolved $CO_2$ degases. However, ${\delta}^{13}C_{DIC}$ could decrease when the pH of water is lower than 5.5 at the early stage of degassing. Laboratory experiments were performed to observe the changes of ${\delta}^{13}C_{DIC}$ as $CO_2$ degassed from three different artificial $CO_2$-rich waters (ACWs) in which the initial pH was 4.9, 5.4, and 6.4, respectively. The pH, alkalinity and ${\delta}^{13}C_{DIC}$ were measured until 240 hours after degassing began and those data were compared with kinetic isotope fractionation calculations. Furthermore, same experiment was conducted with the natural $CO_2$-rich water (pH 4.9) from Daepyeong, Sejong City. As a result of experiments, we could observe the decrease of DIC and increase of pH as the degassing progressed. ACW with an initial pH of 6.4, ${\delta}^{13}C_{DIC}$ kept increasing but, in cases where the initial pH was lower than 5.5, ${\delta}^{13}C_{DIC}$ decreased until 6 hours. After 6 hours ${\delta}^{13}C_{DIC}$ increased within all cases because the $CO_2$ degassing caused pH increase and subsequently the ratio of $HCO_3{^-}$ in solution. In the early stage of $CO_2$ degassing, the laboratory measurements were well matched with the calculations, but after about 48 hours, the experiment results were deviated from the calculations, probably due to the equilibrium interaction with the atmosphere and precipitation of carbonates. The result of this study may be not applicable to all natural environments because the pressure and $CO_2$ concentration in headspace of reaction vessels was not maintained constant as well as the temperature. Nevertheless, this study provides fundamental knowledge on the ${\delta}^{13}C_{DIC}$ evolution during $CO_2$ degassing, and therefore it can be utilized in the studies about carbonated water with low pH and the monitoring of geologic carbon sequestration.

Aminolysis of 4-Nitrobenzenesulfenyl Chloride

  • Lee, Jong-Pal;Lee, Sung-Sik;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1071-1073
    • /
    • 2011
  • The reactions of 4-nitrobenzenesulfenyl chloride with substituted benzylamines proceed through three pathways, the uncatalyzed ($k_2$) and catalyzed ($k_3$) paths including solvolysis ($k_o$) by the solvent. The large value of primary normal kinetic isotope effects imply that the proton transfer occurs concurrently from benzylamine to Cl atom of the substrate. The ${\beta}_x$ and ${\rho}_x$ values for the catalyzed path, $k_3$, are greater than those for the uncatalyzed path, indicating that greater degree of bond formation in the catalyzed TS compared to the uncatalyzed TS.

Kinetics of Oxidation of Nitrotoluenes by Acidic Hexacyanoferrate (Ⅲ)

  • Bhattacharjee, A. K.;Mahanti, M. K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.3
    • /
    • pp.120-123
    • /
    • 1983
  • The reaction of hexacyanoferrate (Ⅲ) with nitrotoluenes in aqueous acetic acid containing perchloric acid(1.0 M) at $50^{\circ}C$ gave the corresponding aldehyde as the major product. The order with respect to each of the reactants ― substrate, oxidant and acid ― was found to be unity. The Hammett plot yielded a ${\sigma}^+$ value of -1.30, and the kinetic isotope effect gave a $k_H/k_D$ value of 6.2. The pathway for the conversion of the nitrotoluenes to the products has been mechanistically visualized as proceeding through the benzylic radical intermediate, formed in the rate determining step of the reaction.