Further Kinetic Studies of Solvolytic Reactions of Isobutyl Chloroformate in Solvents of High Ionizing Power Under Conductometric Conditions

Gui Taek Lim,[†] Yeong Ho Lee,[‡] and Zoon Ha Ryu^{*}

Department of Chemistry, Dong-Eui University, Busan 614-714, Korea. *E-mail: zhryu@deu.ac.kr *Department of Chemistry, Dong-A University, Busan 604-714, Korea *Korea advanced Food Research Institute, Busan 608-736, Korea Received September 16, 2012, Accepted December 5, 2012

Solvolyses of isobutyl chloroformate (4) in 43 binary solvent mixtures including highly aqueous media, water, D₂O, CH₃OD, 2,2,2-trifluoroethanol (TFE) as well as aqueous 1,1,1,3,3,3-hexafluoro-isopropanol (HFIP) solvents were performed at 45 °C, in order to further investigate the recent results of D'Souza, M. J¹. *et al.*; solvolyses of 4 are found to be consistent with the proposed mechanism (Ad_E). The variety of solvent systems was extended to comprise highly ionizing power solvent media ($Y_{CI} > 2.7$ excepted for aqueous fluorinated solvents and pure TFE solvent) to investigate whether a mechanistic change occurs as solvent compositions are varied. However, in case of 18-solvent ranges having aqueous fluorinated solvent systems (TFE-H₂O and HFIP-H₂O) and/or having $Y_{CI} > 2.7$ solvent systems, the solvent effect on reactivity for those of 4 are evaluated by the multiple regression analysis as competition with S_N2 - type mechanism. And in pure TFE and 97 w/w % HFIP solvents with high Y_{CI} and weak N_T, these solvolyses are understood as reactions which proceed through an ionization (S_N1) pathway.

Key Words : Extended Grunwald-Winstein equation, Solvolysis, Kinetic solvent isotope effect, Solvent effect

Introduction

According to the recent results of D'Souza, M. J¹. *et al.* (**2011**. *Beilstein J. Org. Chem.*) for solvolyses of isobutyl chloroformate (**4**) using the extended Grunwald-Winstein equation [eq. (1)],²⁻⁵ solvent effects on reactivity for those of **4** were revealed to proceed *via* an addition-elimination mechanism with nucleophilic attack at the reaction center (C=O) stabilizing the transition state (TS).

$$\log (k/k_o) = mY_{Cl} + lN_T + c$$
(1)

In eq. (1) *k* and k_0 are rate constant of solvolysis of a substrate RX in a given solvent and 80% ethanol-water, respectively; *m* is the susceptibility to change in ionizing power (Y_{Cl}: based on solvolysis of 1-adamantyl chloride⁴ with *m*=1.00); *l* is the susceptibility to changes in solvent nucleophilicity (N_T) (N_T: based on the solvolyses of *S*-methyl dibenzothiophenium ion¹⁵); and c is a constant (residual term).

We have carried out further work because the results reported were obtained using only 18 solvents for the correlation analysis; in particular, the experimental results were obtained without considering highly aqueous solvent systems including aqueous 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), which may influence those of **4** by inducing a mechanistic change⁶⁻⁹ due to the variation of solvent composition; also, there is a potential problem of possible multicolinearity for solvolytic analyses by two-terms multiple regressions.

Iso-butylchloroformate (4) is a chloroformate ester, useful as a pharmaceutical precursors, with geometrical *syn* confor-

mation in 3-D structure.¹⁰⁻¹³

In this work, solvents having ionizing power values (Y_{CI}) > 2.7 were regarded as highly ionizing power media, such as aqueous fluorinated alcohols, pure water and the solvent ranges 40% MeOH \rightarrow H₂O, 40% EtOH \rightarrow H₂O and 30% acetone \rightarrow H₂O, respectively. Within this range of solvents, there are differences in solvent nucleophilicity (N_T) value (*e.g.*, N_T; -0.74 for 40% EtOH and -2.97 for 97 w/w % HFIP).

Results and Discussions

Solvolysis of **4** in 43 binary solvent mixtures including highly aqueous media, water, D_2O , CH_3OD , 2,2,2-trifluoroethanol (TFE) solvent systems as well as aqueous HFIP solvents were performed at 45 °C.

Particularly, kinetic data for highly aqueous binary mixtures (with alcohol and acetone cosolvents) containing water (or D_2O) were obtained from an improved rapid-mixing conductometric technique (see footnote in Table 1) to minimize problems associated with sparingly soluble substrates. Additional kinetic data in 100% H₂O, MeOH, and EtOH, 80% MeOH, 80% EtOH, 97% w/w TFE-water, and 97% w/w HFIP-water at various temperatures are also reported in Table 2.

These specific rates show the phenomena of maximum rates at 45 °C in specific solvent (10% MeOH) and the relative values of $k_{\rm H_2O}/k_{\rm solvent}$ rate-ratios are less than 4-fold for 40% MeOH, 40% EtOH and 30% acetone. Such observations may be a reflection of a significant contribution from solvent nucleophilicity (N_T) into solvolysis rates of **4**, even

616 Bull. Korean Chem. Soc. 2013, Vol. 34, No. 2

Table 1. The rate constants $(k/s^{-1})^a$ for solvolysis of isobutyl chloroformate (4) in binary solvent mixtures at 45.0 °C

n		rate constant (k/s^{-1})				
Methanol-water	Ethanol-water	Acetone-water				
(5.35±0.01)×10 ⁻⁴	(1.49±0.03)×10 ⁻⁴	-				
$(1.00\pm0.01)\times10^{-3}$	$(3.11\pm0.06)\times10^{-4}$	$(1.62\pm0.05)\times10^{-5}$				
$(1.44\pm0.01)\times10^{-3}$	$(4.17\pm0.08)\times10^{-4}$	$(4.94\pm0.01)\times10^{-5}$				
$(1.83\pm0.03)\times10^{-3}$	$(5.36\pm0.08)\times10^{-4}$	$(1.05\pm0.01)\times10^{-4}$				
$(2.18\pm0.01)\times10^{-3}$	$(6.51\pm0.04)\times10^{-4}$	$(1.75\pm0.01)\times10^{-4}$				
$(2.48\pm0.03)\times10^{-3}$	$(8.05\pm0.09)\times10^{-4}$	$(3.03\pm0.01)\times10^{-4}$				
$(2.50\pm0.01)\times10^{-3d}$	$(1.02\pm0.02)\times10^{-3}$	$(4.85\pm0.04)\times10^{-4}$				
(2.82±0.01)×10 ^{-3d}	(1.33±0.07)×10 ^{-3 d}	$(7.30\pm0.01)\times10^{-4c}$				
(2.19±0.01)×10 ^{-3e}	$(1.69\pm0.01)\times10^{-3d}$	(1.19±0.01)×10 ^{-3d}				
(2.85±0.01)×10 ^{-3f}	$(2.33\pm0.01)\times10^{-3e}$	(1.78±0.06)×10 ^{-3e}				
(2.82±0.01)×10 ^{-3f}	$(2.82.\pm0.01)\times10^{-3f}$	(2.82±0.01)×10 ^{-3f}				
MeOD	$D_2O^{c,f}$					
$(2.64\pm0.01)\times10^{-4}$	$(1.83\pm0.02)\times10^{-3}$					
TFE-waterg.h	TFE-ethanol ^{e, i}	HFIP-water ^{g,h}				
$(2.98\pm0.02)\times10^{-5}$	-	-				
(1.15±0.05)×10 ⁻⁵	-	(1.37±0.01)×10 ⁻⁴				
$(1.27\pm0.02)\times10^{-5}$	-	$(4.42\pm0.08)\times10^{-5}$				
-	(5.62±0.02)×10 ⁻⁶	-				
(3.88±0.11)×10 ⁻⁵		(6.17±0.01)×10 ⁻⁵				
	(1.77±0.03)×10 ⁻⁵	-				
	(3.30±0.01)×10 ⁻⁵	(1.19±0.01)×10 ⁻⁴				
	(4.61±0.02)×10 ⁻⁵	-				
-	(9.98±0.02)×10 ⁻⁵					
	ⁿ Methanol-water $(5.35\pm0.01)\times10^{-4}$ $(1.00\pm0.01)\times10^{-3}$ $(1.44\pm0.01)\times10^{-3}$ $(1.83\pm0.03)\times10^{-3}$ $(2.18\pm0.01)\times10^{-3}$ $(2.48\pm0.03)\times10^{-3}$ $(2.50\pm0.01)\times10^{-3d}$ $(2.82\pm0.01)\times10^{-3d}$ $(2.82\pm0.01)\times10^{-3f}$ MeOD $(2.64\pm0.01)\times10^{-4}$ TFE- water ^{g,h} $(2.98\pm0.02)\times10^{-5}$ $(1.15\pm0.05)\times10^{-5}$ $(1.27\pm0.02)\times10^{-5}$ $(3.88\pm0.11)\times10^{-5}$	$\begin{tabular}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$				

^aDetermined by the conductometric method. ^bv/v basis by alcohol. ^cUsing the kinetic apparatus with a turbo-stirrer made by exquisite technique for rapid-mixing in solvent systems corresponding of footnotes of *d*, *e* and *f*, respectively. ^dInjected 4 μ L of 5% w/w substrate. ^eInjected 4 μ L of 3% w/w substrate. ^gInjected 4 μ L of 2% w/w substrate. ^h%w/w basis by fluorinated solvent. ⁱ% v/v trifluoroethanol.

within a range of higher ionization solvent systems known to favour unimolecular ionization $(S_N 1)$ reaction in acid chloride solvolyses.^{9a,c}

On the other hand, in case of a higher solvent nucleophilicity¹⁵ of EtOH molecule (N_T: 0.37) relative to H₂O molecule (N_T: -1.38) with a greater of acidity, the relative value of $k_{\text{H2O}}/k_{\text{EtOH}}$ rate-ratio for hydrolysis/ethanolysis of **4** at 45 °C were found to be a smaller value (*ca.* 19) than expected. Hydrolysis in pure water can be also a clue for inferring that both ionizing power and solvent nucleophilicity terms are important contributors to the observed solvent effect.

These results for solvolyses of **4** mean that contributions from both nucleophilic solvent participation on carbonyl carbon (C=O), and from nucleophilic solvation of TS by polar solvent need to be evaluated in terms of two-term multiple parameters [eq. (1)].^{14,15}

The extensive range of solvents for solvolyses of **4**, varying in nucleophilicity and ionizing ability, allow us to deduce an improved evaluation of solvent effects on reactivity and mechanism. Parallel comparisons of our results for **4** were carried out with those of other chloroformates (similarity models) earlier reported, such as *n*-propyl chloroformate (**1**, *n*-Pr),²⁷ isopropyl chloroformate (**2**, *i*-Pr),^{17,18} isopropenyl

Gui Taek Lim et al.

Table 2. Rate constants $(k/s^{-1})^a$ for solvolyses of isobutyl chloroformate (**4**) and activation parameters^{*b*}

Calvant	т/0С	$l_{r/c}^{-1}$	ΔH^{\neq}	ΔS^{\neq}
Solvent	I/ C	<i>K</i> /S	kcal mol ⁻¹	cal mol ⁻¹ K ⁻¹
	25	$(9.98 \pm 0.01) \times 10^{-5}$	14.9 (14.1) ^c	-26.8 (-29.6) ^c
100% MeOH	35	$(2.35 \pm 0.02) \times 10^{-4}$		
	40	3.53(3.27) ^c ×10 ^{-4d}		
	45	$(5.23 \pm 0.05) \times 10^{-4}$		
		$(4.63) \times 10^{-4c}$		
	55	$(1.11 \pm 0.01) \times 10^{-3}$		
	25	$(3.20 \pm 0.01) \times 10^{-4}$	13.6	-29.0
800/ MaOH	35	$(6.84 \pm 0.02) \times 10^{-4}$		
80% MeOn	45	$(1.44 \pm 0.02) \times 10^{-4}$		
	55	$(2.85 \pm 0.02) \times 10^{-4}$		
	25	$(3.00 \pm 0.02) \times 10^{-5}$	14.2 (15.2) ^{c,e}	-29.5 (-28.6) ^{c,e}
100% EtOH	35	$(6.45 \pm 0.02) \times 10^{-5}$		
	45	$(1.49 \pm 0.03) \times 10^{-4}$		
		$(1.27) \times 10^{-4c}$		
	55	$(3.22 \pm 0.01) \times 10^{-4}$		
	25	$(9.00 \pm 0.07) \times 10^{-5}$	14.2 (14.0) ^c	-29.6 (-30.4) ^c
	35	$(1.97 \pm 0.02) \times 10^{-4}$		
80% EtOH	45	$(4.17 \pm 0.08) \times 10^{-4}$		
		(3.85)×10 ^{-4c}		
	55	$(8.85 \pm 0.01) \times 10^{-4}$		
	25	$(4.17 \pm 0.05) \times 10^{-4f}$	15.8 (15.5) ^g	-20.6
1000/ 11.0	35	$(1.11 \pm 0.04) \times 10^{-3}$		
100% H ₂ O	45	$(2.82 \pm 0.01) \times 10^{-3}$		
	55	$(6.97\pm0.03)\!\!\times\!\!10^{\!-\!3}$		
97% TFE	35	$(3.67 \pm 0.01) \times 10^{-6}$	22.0 (21.5) ^c	-12.2
	45	$(1.15 \pm 0.05) \times 10^{-5}$		
	55	$(3.48 \pm 0.01) \times 10^{-5}$		
		(2.66)×10 ^{-5c}		
97% HFIP	35	$(4.47 \pm 0.04) \times 10^{-5}$	20.3	-15.0
	45	$(1.37 \pm 0.01) \times 10^{-4}$		
	55	$(3.62 \pm 0.03) \times 10^{-4}$		

^{*a*}Determined as described in footnote *a* in Table 1. ^{*b*}Obtained from Erying plots. ^{*c*}Quoted in Table 1 or 2 of ref. 1. ^{*d*}Obtained from interpolation using Arrhenius plots. ^{*e*} Δ H^{\neq} =12.9 kcal mol⁻¹ and Δ S^{\neq} = -29.9 cal mol⁻¹K⁻¹, respectively for **3** (Table 4 of ref. 16). ^{*f*}Double injected (2 × 4 µL) of 0.5% (w/w) substrate for each kinetic run.

chloroformate (3, *i*-Prop),^{16,19} neopentyl chloroformate (5, neoP)²⁰ and 1-adamantylmethyl chloroformate (6, 1-AdCH₂).

A scatter plot between dependent variables ($y=log(k/k_o)$ for 4) and two explanatory variables ($x_1=Y_{Cl}$, $x_2=N_T$) for regression analysis gave non-linear correlations exhibited in

Figure 1. The scatter plots of relationship between dependent variables $[\log(k/k_{o}) \text{ for 4}]$ and two explanatory variables (Y_{CI}, N_T) at 45° for regression analysis. (solid symbols: plots for Y_{CI} , open symbols: plots for N_T).

Figure 1. The validity for two-terms multiple regression analyses [eq. (1)] for further work of **4** was strongly secured from these relationship observed [y vs $x_1 \rightarrow r$ (linear correlation coefficient) = 0.348, p-value (significance probability) = 0.003 and y vs $x_2 \rightarrow r = 0.439$, p-value = 0.000].

When a multiple regression analysis of $log(k/k_o)$ on $Y_{Cl}(x_1)$ and $N_T(x_2)$ of corresponding the two-terms Grunwald-Winstein eq. (1)^{4b,14,21} is performed for solvolysis rates of **4** in all solvent systems (41-solvents) chosen for this work at 45.0 °C, it leads to a poor correlation (correlation coefficient, r = 0.857), [with 0.40(±0.05) for *m*, 0.68(±0.08) for *l* and $-0.16(\pm 0.10)$ for c, respectively, in Table 3].

Conversely, in earlier studies, a specific solvolyses rate studies of 3 (as similarity model) had been carried out by

Ryu, Z. H. *et al.* (2005, *Bull. Korean Chem. Soc.*)¹⁶ and D'Souza, M. J. *et al.* (2011, *Eur. J. Chem.*),¹⁹ respectively. Analysis results (with being essentially identical for conclusion) reported by D'Souza, M. J. *et. al.* (by Ryu, Z. H. *et al.*), in 51 (40) solvent systems containing a highly ionizing media as well as TFE-EtOH solvent systems, gave rise to a good (single type) linear correlation with the values of 0.54 (0.60) for *m*, 1.54 (1.88) for *l* and 0.966 (0.968) for *r*, indicating a single mechanism, regardless of the characteristic of solvent chosen (excluding 97% TFE and 97% HFIP solvent systems from the correlation).¹⁹

Such phenomenon for **4** may be explained as the dispersion effect caused by differential solvation effect on the reaction center to bring out the different reaction mechanisms; accordingly, solvolyses analysis in solvent systems chosen may be estimated by assuming that unsatisfactory correlation is caused by dual channel mechanism.

For 35-solvent systems including TFE-EtOH solvents, but excluding aqueous fluorinated solvents, a good linear correlation analysis (r = 0.953) was obtained from the specific solvolysis rate constants of Table 1 using the extended Grunwald-Winstein equation [eq. (1)], giving log (k/k_0) = 0.62 (±0.02) Y_{Cl}+ 1.82 (±0.14)N_t+ 0.06 (±0.05) with 158 of F-test value and 0.001 of *p*-value (Table 3, Figure 2).

In case of all analyzed in further work for **4**, *p*-values (significance probability) as criteria for significance of multiple regression analyses [eq. (1)] were observed as $p \le 0.001$ (F-test > 45). Statistical variance inflation factor (VIF) were obtained as 5.17 for the multiple regression in 35-solvent systems (Figure 2) and as 1.03 for those in 18-solvent systems (Figure 3); a consequence of our work is that the potential problem of multicolinearity (VIF > 10: problem) could be avoided.

As presented in Table 3, when compared with recent results (evaluated only in highly alcoholic media) reported by D'Souza, M. J. *et al.*, our result exhibits the same large amount of nucleophilic solvent assistance (l = 1.82) and correlation coefficient (r), but different magnitude of polar solvation ($m = 0.53 \rightarrow 0.62$) and those of F-test value. The revised m-value have relevance to a greater number (18 \rightarrow 35) of solvents available for correlation analysis, indicating

Table 3. Comparison of previous and our results in multiple regression analyses for solvolyses^{*a*} of isopropenyl (3) and isobutyl chloroformate (4) in chosen solvent mixtures at 10 $^{\circ}$ C using the extended Grunwald-Winstein equation [eq. (1)]

			$\log(k/k_{\rm o}) =$	$= m Y_{Cl} + l N_t + 0$	C		
ROCOCI	<i>m</i> (A)	<i>l</i> (B)	c	n ^b	r ^c	$B/(A+B)^d$	\mathbf{F}^{e}
<i>i</i> -Prop (3) ^{<i>f</i>,<i>g</i>}	0.54 ^f	1.54^{f}	0.05 ^f	50^{h}	0.968 ^f	0.74^{f}	347 ^f
	0.60^{g}	1.88^{g}	0.25^{g}	40^h	0.968 ^g	0.76^{g}	
<i>i</i> -Bu (4)	0.53 ⁱ	1.82^{i}	1.81 ⁱ	18 ⁱ	0.957 ⁱ	077^{i}	82^{i}
	0.62 ± 0.02	1.82 ± 0.14	0.06 ± 0.05	35 ^j	0.953	0.75	158
	0.40 ± 0.05	$0.68 {\pm} 0.08$	-0.16±0.10	41^{h}	0.857	0.630	45
	0.67 ± 0.08	0.80 ± 0.06	-1.10±0.33	18^{k}	0.974	0.54	138

^{*a*}Performed using Origin 6.0 program for multiple regression analysis and values of solvent parameter Y_{Cl} and N_T are quoted from ref 4, 15 and 21. ^{*b*}Number of solvent. ^{*c*}Correlation coefficient. ^{*d*}Fraction of the contribution from solvent nucleophilicity. ^{*c*}F-test value. ^{*f*}Data from ref.19. ^{*g*}Data from ref.16. ^{*b*}Full range of solvent chosen. ^{*i*}Data from ref.1. ^{*j*} Except for the fluorinated aqueous solvents. ^{*k*} Highly ionizing power media, ($Y_{Cl} > 2.7$) except for the 100% TFE and 97 HFIP-H₂O solvents.

Figure 2. Plot of $log(k/k_o)$ for solvolysis of isobutyl chlorofomate (4) at 45 °C aganist (0.652Y_{Cl} + 1.82N_T). Except for 100%TFE, TFE-H₂O and HFIP-H₂O in this correlation.

that contributions from highly ionizing media into stabilization of TS for this reaction **4** are important. That is, the change of *m*-value could be considerable evidence for the existence of tetrahedral-type intermediate (stepwise), which could be stabilized by nucleophilic solvation, and TS-stabilization by nucleophilic solvation for **4** showed more sensitive for than those of **3**.

Considering the nucleophilicity of solvents used which have $N_T > -1.5$ (higher) the value relative to those of aqueous fluorinated solvents, the $0.62Y_{Cl}$ term obtained implicates the degree of the nucleophilic solvation of TS by the charge-dipole interaction with a nucleophilic solvents and the $1.82N_t$ term obtained involves those of the nucleophilic participation by the nucleophile solvent for the stabilization of TS.

Accordingly, the fraction (0.75) of the contribution from solvent nucleophilicity (N_T) as well as the magnitude of the susceptibility ratio (l/m = 2.94) between the two-term parameters were induced into being rationalized as a additionelimination mechanism (Ad_E) with the carbonyl addition step being rate determining by using the useful mechanistic indicator [(l/m = 1.9-3.0 for Ad_E, $l/m \le 0.8$ for I (ionization pathway), respectively].¹

As shown in Table 4, the value of $[k_{40E}/k_{97T}]_Y$ for 4 was observed as 116 (98)^{24a} indicating a loose (polar) TS; the value is smaller than that for 3 with 4.46 × 10³. In contrast, the high value of k_{MeOH}/k_{MeOD} (KSIE) in methanol > 2.0 for both 4 and 3 indicates a third order reaction³⁰⁻³³ involving one molecule of solvent as nucleophile and another as general base catalyst (GBC).^{16,30,34} The trend of results for 4 is similar to recently reported results for 6.²⁰ In 100% water, the value of $k_{\rm H2O}/k_{\rm D2O}$ ratios are 1.54 for **4** and 2.08 for **3**, respectively, indicating substrates believed to react by the bimolecular mechanism.

Putative cause of this result observed may be a reflection of the difference in rate-limiting step (mechanism) according to the kind of binary solvent mixtures chosen for **4**, but to the variation of solvent composition.

So the $[k_{40E}/k_{97T}]_{Y}$ ratio could be not a central role as the mechanistic tool available for identifying the two different (dual) reaction channels occurring, although, 40E and 97T of corresponding the range of polar media (see footnote *a* of Table 4) are favorable S_N1 solvolyses, and the $k_{H_{2O}}/k_{TFE}$ ratio with 94 (small value) for **4** as additional data is also supported with our interpretation. These offer another reason for separating solvent systems used for this work into three parts for multiple correlation analysis as follow; (i) the majority of the 35-solvents excluding 6-aqueous fluorinated solvent systems. (ii) the 18-solvent ranges having aqueous fluorinated solvent systems (TFE-H₂O and HFIP-H₂O) as well as $Y_{C1} > 2.7$ solvent systems, and (iii) the solvents of highest Y_{C1} and lowest N_T (pure TFE and 97% HFIP-H₂O solvents).

Results from a multiple regression analysis for solvolysis of **4** in solvent systems of corresponding (ii) is obtained as a good linear correlation (r = 0.974, n = 18 and F-test = 138) with log (k/k_o) = (0.67 ± 0.08)Y_{C1}+ (0.80 ± 0.06)N_T + (-1.10 ± 0.33) and is also tabulated in Table 2 (Figure 3).

Also, considering fraction (0.54) of the contribution from solvent nucleophilicity and the magnitude of the susceptibility ratio (l/m = 1.19) between the two-term parameters.

Figure 3. Plot of $\log(k/k_0)$ for solvolyses of isobutyl chloroformate (**4**) at 45 °C aganist (0.67Y_{Cl} + 1.88N_T) in highly aqueous media (Y_{Cl} > 2.7). Except for 100%TFE and 97%HFIP-H₂O solvents.

Table 4. Values of solvolysis rate ratios, $[k_{40E}/k_{97T}]_{Y}^{a}$, in 40% (v/v) ethanol-water (40E) compared with 97% (w/w) trifluoroethanol-water (97T), kinetic solvent isotope effect (KSIE)^b in methanol, and the magnitude of the susceptibility ratio (*l/m*) between the two-term parameters for various alkyl chloroformate (ROCOCI)

ROCOCI	$R = n - Pr^{c}$ (1)	<i>i</i> -Pr ^d (2)	<i>i</i> -Prop ^{<i>e</i>} (3)	<i>i</i> -Bu (4)	<i>n</i> eoP ^{<i>f</i>} (5)	1-AdCH ₂ ^g (6)	MeOTs
$[k_{40E}/k_{97T}]_{ m Y}$	-	-	4.46×10 ^{3h}	116(98) ⁱ	-	84 ^{<i>j</i>,<i>k</i>}	500 ¹
$k_{\rm MeOH}/k_{\rm MeOD}$	2.17^{m}	(1.35)	2.33(2.08)	2.20(1.54)	-	2.19	1.11 ⁿ
l/m	2.80	$0.54 \\ (0.48)^{o}$	3.13 (2.83) ^p	$2.94 (3.43)^{q} (1.19)^{r}$	3.67	3.25	-
n/nt ^s	22/28 ^{<i>t</i>} ,	$20/24^u$ (26/26) ^o	40/40 (50/51) ^{p,v}	$34/41^w$ $(18/23)^{q,x}$	13/21 ^w	18/27	-

"Subscribed Y symbol means that very similar solvent ionizing power (Y_{Cl}), but the different nucleophilicity (N_T) (Y_{Cl} of 2.75, N_T of -0.74 for 40% ethanol/water and Y_{Cl} of 2.85, N_T of -3.30 for 97% w/w trifluoroethanol/water). ^{*b*}KSIE = k_{MeOH}/k_{MeOD} and value is parenthesis in k_{H2O}/k_{D2O} . ^cRef. 22 at 40 °C. ^{*i*}Ref. 17 at 40 °C. ^{*c*}Ref. 16 at 10 °C. ^{*f*}Ref. 20 at 45 °C. ^{*s*}Ref. 23 at 40 °C. ^{*h*}[k_{40E}/k_{9TT}]_Y = 1.08 × 10⁻³s⁻¹ (ref. 16)/2.42 × 10⁻⁷s⁻¹ (ref. 19) at 10 °C. ^{*i*}Ref. 24a. ^{*j*}Ref. 24b at 40 °C. ^{*k*}88 (25 °C) value for Bu/COCl (ref. 25) with k_{MeOH}/k_{MeOD} = 1.46 and l/m = 0.83, (S_N1/S_N2 mechanism) excluding TFE-ethanol systems for correlation analysis at 10 °C. ^{*i*}Ref. 26. ^{*m*}Ref. 27 at 25 °C. ^{*m*}Ref. 18 at 45 °C. ^{*n*}Ref. 19. ^{*q*}Ref. 1. ^{*r*}Rest to btained from condition presented in footnote *k* of Table 3. ^{*n*}n_t = number of solvents used for correlation/ available total number of solvents. ^{*t*}Except for 100%TFE, 97%TFE and 1HFIP-H₂O solvents. ^{*t*}Except for aqueous TFE solvents, no kinetic run for HFIP-H₂O solvents.

According to criteria for mechanism presented previously, this probably means the prediction for $S_N 2$ mechanism with equivalent contribution from nucleophilic solvation and nucleophilic participation for TS-stabilization in solvolysis of **4**.

As a result, owing to the different solvation of TS according to whether the majority of 35-solvents or 18-highly ionizing media ($Y_{CI} > 2.7$), dual channel mechanism can be explained by an addition-elimination (Ad_E) pathway with predominant nucleophilic participation, described as a carbonyl addition channel and S_N2 pathway with change of nucleophilic solvent assistance, and specially, in case of (iii), the data points for pure TFE and 97% HFIP solvents are excluded (deviated) from 18-solvent systems data points in linear correlation analyses, these reaction, the consideration of an essential characteristic of these solvents with the solvents of highest Y_{CI} and lowest N_T supposes that these reaction are preceding through an S_N1 (ionization) pathway with preferential partial charge separation, described as a cationic reaction channel.

For solvolyses group comprised of **1**, **3** and **6** similar to the value of k_{MeOH}/k_{MeOD} (KSIE) in methanol (> 2.0), TFE-EtOH solvent systems, with possibility for third order reaction^{30,31} based on a general base catalyst (GBC) by solvent molecules, were also contained of the data points in the multiple regression analysis by two term parameters [eq. (1)], but aqueous fluorinated solvent TFE-H₂O and/or HFIP-H₂O solvents became removal from data points, and the other side, for those consisted of **2** and **3**, the analysis results having the data points only excepted for a less aqueous media (see footnote *u* of Table 4) and those having the data points and the solvent available (see footnote *v* of Table 4), respectively, were shown in Table 4. The substrate (**4**) discussed also corresponds to the former type in the multiple correlation analysis.

It has been reported³⁴ that TFE solvent (media of low nucleophilicity) could play a prominent role as the solvent to

make stabilization of long-lived carbocationic intermediate, for pure TFE and 97% HFIP solvents excepted from data points of two-term parameters correlation [eq. (1)] in solvolyses of **4**, these solvents behavior for **4** may act as a molecule of ionization. Whereas, in case of solvolyses of **3** with those a good correlation, almost all solvents (containing aqueous fluorinated solvents, without 97% HFIP) behavior may act as a molecule of nucleophile.

A linear rate-rate profile for solvolyses of **3** at 10 °C and those of **4** at 45 °C, with linear slope 1.02 (r = 0.972) implying identical mechanisms, is shown in Figure 4. However,

Figure 4. Rate-rate profile for solvolyses of isopropenyl chloroformate (**3**) at 10 °C and isobutyl chloroformate (**4**) at 45 °C in various solvent systems. (data for **3** from ref. 16).

Figure 5. Rate-rate profile for solvolyses of **1** at 40 °C and **4** at 45 °C in various solvent systems. (data for **1** from ref. 23).

data points of corresponding aqueous HFIP solvents deviate significantly (with differential solvation of TS accompanying different mechanism).

A major cause for a greater rate constants for **4** of pure TFE and 97%(w/w) HFIP (as shown in Table 1), compared with the general trend of rates in aqueous fluorinated solvents, consistent with preceding explanation showing that a carbocationic reaction channel is dominant, and those of **4** in 97% TFE (97% HFIP) has a less negative $\Delta S^{\neq} = -12.2$ (-15.0) cal mol⁻¹ K⁻¹ than the other solvent ($\Delta S^{\neq} = -26.8 \sim -29.6$ cal mol⁻¹ K⁻¹) investigated including water ($\Delta S^{\neq} = -20.6$ cal mol⁻¹ K⁻¹) in Table 2. These results provide support for the validity of our elucidation of the role in solvents.

To compare with reactivity for solvolyses of 1, 4, 5, and 6,

Figure 6. Rate-rate profile for solvolyses of **5** at 45 °C and **4** at 45 °C in various solvent systems. (data for **5** from ref. 20).

0.5 0.0 -0.5 iog $(k/k_{\rm o})$ for **6** -1.0 methanol-water ethanol-water acetone-water -1.5 TFE-water TFE-ethanol r=0.963. n=25 HFIP-water -2.0 -2.5 -0.5 0.0 0.5 -1.5 -1.0 1.0 $\log (k/k_0)$ for 4

Figure 7. Rate-rate profile for solvolyses of **6** at 40 °C and **4** at 45 °C in various solvent systems. (data for **6** from ref. 24).

plots of logarithms of rate constants (rate-rate profiles) for solvolyses of **4** *vs* rates for $1,^{23}$ $5,^{20}$ and $6,^{24}$ respectively were attempted and these results show good linear correlations (as mentioned in Figure 5, Figure 6 and Figure 7, respectively) with the slopes of almost unity and linear coefficients (r) of 0.963-0.972 (n = 19-25) reduced, due to dispersion phenomena in fluorinated solvent systems. Consequently, these solvolyses show essential identical solvent effects on reactivity.

Conclusions

Values of l/m provide useful mechanistic criteria for the solvent effect in solvolytic reactions of acid chlorides [$(l/m = 1.9-3.0 \text{ for Ad}_{\text{E}}, l/m \le 0.8 \text{ for I}$ (ionization pathway).¹ For solvolyses of **4**, l/m = 2.94 in a majority of the solvents (35), confirming that a tetrahedral-type intermediate (stepwise) led to a carbonyl addition mechanism (Ad_E); also, nucleophilic solvation was significant, and there was no mechanistic change caused by variation of solvent compositions.

However, in case of 18-solvent ranges having aqueous fluorinated solvent systems (TFE-H₂O and HFIP-H₂O) as well as $Y_{CI} > 2.7$ solvent systems, the effect on reactivity for those of **4** (l/m = 1.20) are evaluated by the multiple regression analysis as competition with S_N2-type mechanism, and S_N1-type mechanism undergoes in pure TFE and 97% HFIP solvents. And TS-stabilization by nucleophilic solvation for **4** showed more sensitive for than those of **3**, due to solvolyses of **4**, in which could not find out a considerable contribution of stoichiometric solvation effect, compared with those of **3**¹⁶ analyzed by third order reaction model.

For solvolyses of $1,^{23}$ 4, 5^{20} and $6,^{24}$ considering the relatively values, for $[k_{40E}/k_{97T}]_Y$, k_{MeOH}/k_{MeOD} , l/m and n/n_t given in Table 4, a consistent pattern of solvent effect on reactivity and mechanism were exposed and the sterically-

Gui Taek Lim et al.

hindrance effect³⁶ of aliphatic group adjacent to the site of nucleophilic attack from the rear for these solvolyses could not found.

In conclusion, solvolyses of **4** show various spectra of mechanisms from Ad_E through S_N2 to S_N1 mechanism, according to the choice of solvent.

Experimental

Isobutyl chloroformate (Sigma-Aldrich \ge 99%) was used as received. All solvents used for kinetic in this work were dried and distilled by standard methods (as described previously³); 1,1,1,3,3,3-hexafluoro-2-propanol was Aldrich reagent (AR:99%) and methanol-*d* was Aldrich reagent (> 99.5 ± > % D).

Specific rate constants for solvolytic reaction **4** proceed as pseudo-first type were determined using a general conductometric method³⁴ and calculation of those were performed by the Origin 6.0 program using the Guggenheim equation³⁷ from data monitored automatically. These were determined conductometrically at least in duplicate; typically injected 4 μ L of 10% w/w substrate in dry acetonitrile into the kinetic apparatus containing 2 mL of each solvent mixture; associated standard deviations, and detailed methods are presented in footnotes of Table 1 and Table 2.

Acknowledgments. This research was supported by Dong-Eui University (grant number 2011AA097). We are grateful to T. W. Bentley for helpful comments.

References

- D'Souza, M. J.; McAneny, M. J.; Kevill, D. N.; Kyong, J. B.; Choi, S. H. *Beilstein J. Org. Chem.* 2011, 7, 543.
- Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 53, 2700.
- 3. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845.
- (a) Bentley, T. W.; Carter, G. E. J. Am Chem. 1982, 104, 5741. (b) Bentley, T. W.; Llewellyn, G Prog. Phys. Org. Chem. 1990, 17, 121.
- 5. Kevill, D. N.; D'Souza, M. J. J. Chem. Res(S) 1993, 174.
- Ryu, Z. H.; Ju, C.-K.; Sung, D. D.; Sung, N. C.; Bentley, T. W. Bull. Korean Chem. Soc. 2002, 23, 123.
- Bentley, T. W.; Shim, C. S. J. Chem. Soc. Perkin Trans. 2 1993, 1659.
- Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991, 56, 1604.
- (a) Bentley, T. W.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1986, 619. (b) Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1985, 983. (c) Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc., Chem. Commun. 1984, 387.
- 10. Lee, I. J. Korean Chem. Soc. 1972, 16, 334.
- 11. Kevill, D. N. The Chemistry of the Functional Groups: The Chemistry of Acyl Halides; Patai, S., Ed.; John Wiley & Sons:

New York, NY, USA, 1972.

- Erben, M. F.; Della, E. W.; Vedova, C. O.; Boese, R.; Willner, H.; Oberhammer, H. J. Phys. Chem., A 2004, 108, 699.
- 13. Bentley, T. W. J. Org. Chem. 2008, 73, 6251.
- Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7667.
- Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; 1, 81.
- Ryu, Z. H.; Lee, Y. H.; Oh, Y. Bull. Korean Chem. Soc. 2005, 11, 1761.
- 17. Kyong, J. B.; Kim, Y.-G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662.
- D'Souza, M. J.; Reed, D. N.; Erdman, K. J.; Kyong, J. B.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 862.
- D'Souza, M. J.; Shuman, K. E.; Omondi, A. O.; Kevill, D. N. *Eur. J. Chem.* 2011, 2(2), 130.
- D'Souza, M. J.; Carter, S. E.; Kevill, D. N. Int. J. Mol. Sci. 2011, 12, 1161.
- Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; 1, 81.
- 22. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1997, 1721.
- Seong, M. H.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2008, 29, 1747.
- 24. Park, K. H.; Lee, Y.; Lee, Y.-W.; Kyong, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2012, 33, 3657.
- 25. (a) Data Estimated rate constant, k_{40E} , is $5.01 \times 10^{-4} \text{ s}^{-1}$ by using polynomial regression (log *k* vs solvent composition, ref. 1). (b) Estimated rate constant, k_{40E} , using polynomial regression with 3rd order and r = 0.9981 (log k_(ref. 23) vs solvent composition), as $4.57 \times 10^{-4} \text{ s}^{-1}$ and then, $[k_{40E}/k_{97T}]_{\text{Y}} = 4.57 \times 10^{-4} \text{ s}^{-1}/5.40 \times 10^{-4} \text{ s}^{-1} = 84$, at 40 °C.
- 26. Ryu, Z. H.; Shin, S. H.; Lee, J. P.; Lim, G. T.; Bentley, T. W. J. Chem. Soc., Perkin Trans. 2 2002, 1283.
- Neal, W. C., Jr.; Dukes, M. D.; Harris, J. M.; Mount, J. J. Am. Chem. Soc. 1978, 8137.
- 28. Kyong, J. B.; Won, H.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87.
- Bentley, T. W.; Llewellyn, G.; Ryu, Z. H. J. Org. Chem. 1998, 63, 4654.
- 30. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724.
- Oh, Y. H.; Jang, G. G.; Lim, G. T.; Ryu, Z. H. Bull. Korean Chem. Soc. 2002, 23, 1089.
- Ryu, Z. H.; Lim, G. T.; Bentley, T. W. Bull. Korean Chem. Soc. 2003, 24, 1293.
- Bentley, T. W.; Harris, H. C.; Ryu, Z. H.; Lim, G. T.; Sung, D. D.; Szajda, S. R. J. Org. Chem. 2005, 70, 8963.
- (a) Bentley, T. W.; Jones, R. O. J. Chem. Perkin Trans. 2 1993, 2351. (b) Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753. (c) Bentley, T. W.; Ebdon, D.; Llewellyn, G.; Abduljabor, M. H.; Miller, B.; Kevill, D. N. J. Chem. Soc. Dalton Trans. 1997, 3819. (d) Koo, I. S. Yang, K.; Kang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc., Perkin Trans. 2 1998, 1179.
- 35. Mayr, H.; Minegishi, S. Angew. Chem. Int. Ed. 2002, 23, 4493.
- 36. Ryu, Z. H.; Bentley, T. W. Bull. Korean Chem. Soc. 2008, 29, 2145.
- 37. (a) Gugggenheim, E. A. *Philos. Mag. 2* **1928**, 538. (b) Frost, A. A.; Pearson, R. G. *Kinetics and Mechanism*, 2nd ed.; Wiley: New York, 1961; p 49.