Browse > Article
http://dx.doi.org/10.5012/bkcs.2003.24.1.065

Acetylcholinesterase(AChE)-Catalyzed Hydrolysis of Long-Chain Thiocholine Esters: Shift to a New Chemical Mechanism  

Jung, Dai-Il (Department of Chemistry, Dong-A University)
Shin, Young-Ju (Department of Chemistry, Dong-A University)
Lee, Eun-Seok (Department of Chemical Technology, Hanbat National University)
Moon, Tae-sung (Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology)
Yoon, Chang-No (Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology)
Lee, Bong-Ho (Department of Chemical Technology, Hanbat National University)
Publication Information
Abstract
The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthiocholine(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. [Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477- 10482] The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.
Keywords
Acetylcholinesterase; Hydrolysis; Thiocholine esters; Kinetic studies; Chemical mechanism;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Pryor, A. N.; Selwood, T.; Leu, L. S.; Andracki, M. A.; Lee, B. H.;Rao, M.; Rosenberry, T.; Doctor, B. P.; Silman, I.; Quinn, D. M. J.Am. Chem. Soc. 1992, 114, 3896-3900.   DOI
2 Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.;Toker, L.; Silman, I. Science 1991, 253, 872-879.   DOI
3 Cardozo, M. G.; Iimura, Y.; Sugimoto, H.; Yamanishi, Y.;Hopfinger, A. J. J. Med. Chem. 1992, 35, 584-593.   DOI
4 Finkelstein, B. L.; Benner, E. A.; Hendrixson, M. C.; Kranis, K.T.; Rauh, J. J.; Sethuraman, M. R.; McCann, S. F. Bioorg. Med.Chem. 2002, 10, 599-613.   DOI   ScienceOn
5 Quinn, D. M.; Selwood, T.; Pryor, A. N.; Lee, B. H.; Leu, L. S.; Acheson, S. A.; Silman, I.; Doctor, B. P.; Rosenberry, T. L. In Multidisciplinary Approaches to Cholinesterase Functions; Shafferman, A., Velan, B., Eds.; Plenum: New York, 1992; pp 141-148.
6 Bourne, Y.; Taylor, P.; Bougis, P. E.; Marchot, P. J. Biol. Chem.1999, 274(5), 2963-2970.   DOI   ScienceOn
7 Cho, Y.; Cha, S. H.; Sok, D. E. Neurochem. Res. 1994, 19, 799-803.   DOI   ScienceOn
8 Salomma, P.; Schaleger, L. L.; Long, F. A. J. Am. Chem. Soc.1964, 86, 1-7.   DOI
9 Wentworth, W. E. J. Chem. Edu. 1965, 42, 96-103.   DOI
10 Inoue, A.; Kawai, T.; Wakita, M.; Iimura, Y.; Sugimoto, H.;Kawakami, Y. J. Med. Chem. 1996, 39, 4460-4470.   DOI   ScienceOn
11 Schowen, K. B. J. In Transition States of Biochemical Processes; Gandour, R. D., Schowen, R. L., Eds.; Plenum: New York, 1978;pp 225-283.
12 Selwood, T.; Feaster, S. R.; States, M. J.; Pryor, A. N.; Quinn, D.M. J. Am. Chem. Soc. 1993, 115, 10477-10482.   DOI   ScienceOn
13 Camps, P.; Achab, R. E.; Görbig, D. M.; Morral, J.; Muñoz-Torreo, D.; Badia, A.; Baños, J. E.; Vivas, N. M.; Barril, X.;Orozco, M.; Luque, F. J. J. Med. Chem. 1999, 42, 3227-3242.   DOI   ScienceOn
14 Potkin, S. G.; Anand, R.; Fleming, K.; Alva, G.; Keator, D.;Carreon, D.; Messina, J.; Wu, J. C.; Hartman, R.; Fallon, J. H. Int.J. Neuropsychopharmacol. 2001, 4, 223-230.
15 Saxena, A.; Redman, A. M. G.; Jiang, X.; Lockridge, O.; Doctor,B. P. Biochem. 1997, 36, 14642-14651.   DOI   ScienceOn
16 Schowen, K. B.; Schowen, R. L. Methods Enzymol. 1982, 87,551-606.   DOI
17 Rosenberry, T. L. Adv. Enzymol. Relat. Areas Mol. Biol. 1975, 43,103-218.   DOI
18 Ripoll, D. R.; Faerman, C. H.; Axelsen, P. H.; Silman, I.;Sussman, J. L. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5128-5139.   DOI   ScienceOn
19 Rocca, P.; Cocuzza, E.; Marchiaro, L.; Bogetto, F. Prog.Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 369-373.   DOI   ScienceOn
20 Venkatasubban, K. S.; Schowen, R. L. CRC Crit. Rev. Biochem.1985, 17, 1-44.   DOI
21 Quinn, D. M.; Sutton, L. D. In Enzyme Mechanism from Isotope Effects; Cook, P. F., Ed.; CRC Press: Boca Raton, FL, 1991; pp 73-126.
22 Quinn, D. M. Chem. Rev. 1987, 87, 955-979.   DOI
23 Boyle, N. A. J.; Talesa, V.; Giovannini, E.; Rosi, G.; Norton, S. J.J. Med. Chem. 1997, 40, 3009-3013.   DOI   ScienceOn
24 Ellman, G. L.; Coutney, K. D.; Andres, V., Jr.; Featherstone, R. M.Biochem. Pharmacol. 1961, 7, 88-95.   DOI   ScienceOn