DOI QR코드

DOI QR Code

Further Kinetic Studies of Solvolytic Reactions of Isobutyl Chloroformate in Solvents of High Ionizing Power Under Conductometric Conditions

  • Received : 2012.09.16
  • Accepted : 2012.12.05
  • Published : 2013.02.20

Abstract

Solvolyses of isobutyl chloroformate (4) in 43 binary solvent mixtures including highly aqueous media, water, $D_2O$, $CH_3OD$, 2,2,2-trifluoroethanol (TFE) as well as aqueous 1,1,1,3,3,3-hexafluoro-isopropanol (HFIP) solvents were performed at $45^{\circ}C$, in order to further investigate the recent results of D'Souza, M. $J^1$. et al.; solvolyses of 4 are found to be consistent with the proposed mechanism ($Ad_E$). The variety of solvent systems was extended to comprise highly ionizing power solvent media ($Y_{Cl}$ > 2.7 excepted for aqueous fluorinated solvents and pure TFE solvent) to investigate whether a mechanistic change occurs as solvent compositions are varied. However, in case of 18-solvent ranges having aqueous fluorinated solvent systems (TFE-$H_2O$ and HFIP-$H_2O$) and/or having $Y_{Cl}$ > 2.7 solvent systems, the solvent effect on reactivity for those of 4 are evaluated by the multiple regression analysis as competition with $S_N2$ - type mechanism. And in pure TFE and 97 w/w % HFIP solvents with high $Y_{Cl}$ and weak $N_T$, these solvolyses are understood as reactions which proceed through an ionization ($S_N1$) pathway.

Keywords

References

  1. D'Souza, M. J.; McAneny, M. J.; Kevill, D. N.; Kyong, J. B.; Choi, S. H. Beilstein J. Org. Chem. 2011, 7, 543. https://doi.org/10.3762/bjoc.7.62
  2. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 53, 2700.
  3. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  4. Bentley, T. W.; Carter, G. E. J. Am Chem. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  5. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  6. Kevill, D. N.; D'Souza, M. J. J. Chem. Res(S) 1993, 174.
  7. Ryu, Z. H.; Ju, C.-K.; Sung, D. D.; Sung, N. C.; Bentley, T. W. Bull. Korean Chem. Soc. 2002, 23, 123. https://doi.org/10.5012/bkcs.2002.23.1.123
  8. Bentley, T. W.; Shim, C. S. J. Chem. Soc. Perkin Trans. 2 1993, 1659.
  9. Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991, 56, 1604. https://doi.org/10.1021/jo00004a048
  10. Bentley, T. W.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1986, 619.
  11. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1985, 983.
  12. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc., Chem. Commun. 1984, 387.
  13. Lee, I. J. Korean Chem. Soc. 1972, 16, 334.
  14. Kevill, D. N. The Chemistry of the Functional Groups: The Chemistry of Acyl Halides; Patai, S., Ed.; John Wiley & Sons:New York, NY, USA, 1972.
  15. Erben, M. F.; Della, E. W.; Vedova, C. O.; Boese, R.; Willner, H.; Oberhammer, H. J. Phys. Chem., A 2004, 108, 699. https://doi.org/10.1021/jp036966p
  16. Bentley, T. W. J. Org. Chem. 2008, 73, 6251. https://doi.org/10.1021/jo800841g
  17. Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7667. https://doi.org/10.1021/ja00440a037
  18. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; 1, 81.
  19. Ryu, Z. H.; Lee, Y. H.; Oh, Y. Bull. Korean Chem. Soc. 2005, 11, 1761.
  20. Kyong, J. B.; Kim, Y.-G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662.
  21. D'Souza, M. J.; Reed, D. N.; Erdman, K. J.; Kyong, J. B.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 862. https://doi.org/10.3390/ijms10030862
  22. D'Souza, M. J.; Shuman, K. E.; Omondi, A. O.; Kevill, D. N. Eur. J. Chem. 2011, 2(2), 130. https://doi.org/10.5155/eurjchem.2.2.130-135.405
  23. D'Souza, M. J.; Carter, S. E.; Kevill, D. N. Int. J. Mol. Sci. 2011, 12, 1161. https://doi.org/10.3390/ijms12021161
  24. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; 1, 81.
  25. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1997, 1721.
  26. Seong, M. H.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2008, 29, 1747. https://doi.org/10.5012/bkcs.2008.29.9.1747
  27. Park, K. H.; Lee, Y.; Lee, Y.-W.; Kyong, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2012, 33, 3657. https://doi.org/10.5012/bkcs.2012.33.11.3657
  28. Ryu, Z. H.; Shin, S. H.; Lee, J. P.; Lim, G. T.; Bentley, T. W. J. Chem. Soc., Perkin Trans. 2 2002, 1283.
  29. Neal, W. C., Jr.; Dukes, M. D.; Harris, J. M.; Mount, J. J. Am. Chem. Soc. 1978, 8137.
  30. Kyong, J. B.; Won, H.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  31. Bentley, T. W.; Llewellyn, G.; Ryu, Z. H. J. Org. Chem. 1998, 63, 4654. https://doi.org/10.1021/jo980109d
  32. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724. https://doi.org/10.1021/jo00239a004
  33. Oh, Y. H.; Jang, G. G.; Lim, G. T.; Ryu, Z. H. Bull. Korean Chem. Soc. 2002, 23, 1089. https://doi.org/10.5012/bkcs.2002.23.8.1089
  34. Ryu, Z. H.; Lim, G. T.; Bentley, T. W. Bull. Korean Chem. Soc. 2003, 24, 1293. https://doi.org/10.5012/bkcs.2003.24.9.1293
  35. Bentley, T. W.; Harris, H. C.; Ryu, Z. H.; Lim, G. T.; Sung, D. D.; Szajda, S. R. J. Org. Chem. 2005, 70, 8963. https://doi.org/10.1021/jo0514366
  36. Bentley, T. W.; Jones, R. O. J. Chem. Perkin Trans. 2 1993, 2351.
  37. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753.
  38. Bentley, T. W.; Ebdon, D.; Llewellyn, G.; Abduljabor, M. H.; Miller, B.; Kevill, D. N. J. Chem. Soc. Dalton Trans. 1997, 3819.
  39. Koo, I. S. Yang, K.; Kang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc., Perkin Trans. 2 1998, 1179.
  40. Mayr, H.; Minegishi, S. Angew. Chem. Int. Ed. 2002, 23, 4493.
  41. Ryu, Z. H.; Bentley, T. W. Bull. Korean Chem. Soc. 2008, 29, 2145. https://doi.org/10.5012/bkcs.2008.29.11.2145
  42. Gugggenheim, E. A. Philos. Mag. 2 1928, 538.
  43. Frost, A. A.; Pearson, R. G. Kinetics and Mechanism, 2nd ed.; Wiley: New York, 1961; p 49.

Cited by

  1. Mechanistic Analysis of 4-Methylthiobenzoyl Chloride in Solvolysis vol.37, pp.4, 2016, https://doi.org/10.1002/bkcs.10726
  2. Influence of Sulfur for Oxygen Substitution in the Solvolytic Reactions of Chloroformate Esters and Related Compounds vol.15, pp.10, 2014, https://doi.org/10.3390/ijms151018310
  3. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates vol.16, pp.12, 2015, https://doi.org/10.3390/ijms160510601
  4. LFER Studies Evaluating Solvent Effects on an α-Chloro-and two β,β,β-Trichloro-Ethyl Chloroformate Esters vol.2, pp.2, 2013, https://doi.org/10.13179/canchemtrans.2014.02.02.0093