• 제목/요약/키워드: Kinetic control

검색결과 405건 처리시간 0.035초

수삼물추출물의 갈변반응중 아미노산과 당류변화 (Changes in Free Amino Acids and Sugars in Water-soluble Extracts of Fresh Ginseng during Browning Reaction)

  • 김만욱;박래정
    • Journal of Ginseng Research
    • /
    • 제5권2호
    • /
    • pp.122-131
    • /
    • 1981
  • An aqueous extract s of fresh ginseng roots was heated at loot for 64 hrs. and the changes of color intensity, pH and the amount of free sugars and amino acids during the various intervals of the heating time were investigated. Color intensity and absorbance of the solution at 490nm were increased in proportion to the length of the heating time. Most of brown pigments produced during the treatment were water soluble, and pH 5.1 at initial stage of the solution, was slightly decreased at the final stages of the reaction. Sucrose, glucose and fructose were major free sugars in ginseng roots, and the amounts of sucrose was over 90 % of total free sugars. Sucrose. was largely decreased approximately 50%, by 64 hrs of the treatment, whereas sharp increase in the amount of glucose and fructose was observed during the reaction in the solution. The observed increase in reducing sugars, glucose and fructose was presumed due to hydrolysis of sucrose. Evidently, glucose and fructose were not important factor to control the browning reaction of the solution. Most of free amino acids and peptides except alanine and isoleucine especially arginine, serine and threonine, were sharply decreased up to 40 : 50% of the original concentration within 2 hrs. Accordingly, the content of free amino acids and peptides seems to be extremely important factor to control the browning reaction in ginseng. A free amino acid, presumed to be nor-leucine, was found in fresh ginseng root on the basis of re mention on liquid chromatography. Kinetic analysis of the browning reaction indicated a pseudo second order with respect to amino acid concentration at the initial stage.

  • PDF

Avrami Kinetics에 적용한 트레할로스와 변성 전분 혼합 사용 떡의 노화 억제 분석 (Retarding Retrogradation of Korean Rice Cakes(Karedduk) with a Mixture of Trehalose and Modified Starch Analyzed by Avrami Kinetics)

  • 김상숙;정혜영
    • 한국식품영양학회지
    • /
    • 제23권1호
    • /
    • pp.39-44
    • /
    • 2010
  • Retarding retrogradation of Korean rice cakes(Karedduk) with a mixture of trehalose and Sun-Tender added, after 0, 24, and 48 hr of storage at $5^{\circ}C$, was analyzed by Avrami kinetics. A central composite design was used for arrangement of treatment. The two independent variables selected for retarding retrogradation analysis were amounts of trehalose(x) and Sun-Tender(y). Trehalose was added at 0, 3, 6, 9, and 12% levels, and Sun-Tender added at 0, 0.3, 0.6, 0.9, and 1.2% levels, to dry rice flour. The Avrami exponent(n) for the mixtures of 9% trehalose and 0.3% Sun-Tender, and 9% trehalose and 0.9% Sun-Tender were lower than in the control. The time constant(1/k) for the mixture of trehalose and Sun-Tender was higher than in the control. The effect of retarding retrogradation of Korean rice cakes with added mixtures of trehalose and Sun-Tender showed an increasing trend as the amount of trehalose increased. These results suggest that adding a mixture of 9% trehalose and 0.3% Sun-Tender, or 9% trehalose and 0.9% Sun-Tender to Korean rice cakes(Karedduk) is effective for retarding retrogradation.

파랑 에너지 변환을 위한 월파제어구조물의 월파량 산정 실험 (Experimental Study on Wave Overtopping Rate of Wave Overtopping Control Structure for Wave Energy Conversion)

  • 신승호;홍기용
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.8-15
    • /
    • 2005
  • Wave energy has been considered to be one of the most promising energy resources for the future, as it is pollution-free and an abundant natural resource. However, since it has drawbacks of non-stationary energy density, it is necessary to change the wave energy into a simple concentrated energy. Progressive waves in a coastal area can be amplified, swashed, and overtopped by a wave overtopping control structure. By conserving the quantity of overflow in a reservoir, the kinetic energy of the waves can be converted to the potential energy with a hydraulic head above the mean sea level. The potential energy in the form of a hydraulic head can be utilized to produce electric power, similar to hydro-electric power generation. This study aims to find the most optimal shape of wave overtopping structure for maximum overtopping volume of sea water; for this purpose, we carried out the wave overtopping experiment in a wave tank, under both regular and irregular wave conditions.

풍속 변동 시 주파수 유지를 위한 풍력발전기 출력 평활화 제어 (Power smoothing scheme of a wind turbine generator for reducing the frequency deviation in varying wind conditions)

  • 김연희;이진식;강용철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.181-182
    • /
    • 2015
  • In a power system with a high wind power penetration level, the output power of a wind power plant (WPP) might give negative impacts on the frequency control of a power system. This paper proposes a power smoothing scheme of a wind turbine generator (WTG) to reduce the frequency deviation. To do this, an additional control loop is used, the output of which depends on the frequency deviation. The gain of the additional loop is determined depending on the kinetic energy (KE) of a WTG; in the under frequency condition, the gain is set to be proportional to the releasable KE of a WTG; otherwise, it is set to the maximum value. The performance of the proposed scheme is investigated for 100-MW doubly-fed induction generator based WPP using an EMTP-RV simulator under various wind conditions. The results show that the proposed scheme successfully reduces the frequency deviation.

  • PDF

Synthesis of Platinum Nanostructures Using Seeding Method

  • Han, Sang-Beom;Song, You-Jung;Lee, Jong-Min;Kim, Jy-Yeon;Kim, Do-Hyung;Park, Kyung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2362-2364
    • /
    • 2009
  • We report Pt hexapod nanoparticles with $6.4\;{\sim}\;9.7$ nm in size by a polyol process in the presence of PVP as a stabilizer and additive as a kinetic controller. The structure and morphology of Pt nanostructures are confirmed by field-emission transmission electron microscopy. The morphological control over platinum nanoparticles is achieved by varying the amount of seeds in the polyol process, where platinum precursor is reduced by ethylene glycol to form Pt nanoparticle at $150\;{^{\circ}C}$. As volume ratio between precursor-solution and seed-solution is increased from 10 to 50, the shape of Pt nanostructures is evolved from small seeds to tripod and hexapod. In addition, the size-controlled platinum hexapod nanostructures are successfully obtained using seeding method.

전기기계 브레이크가 적용된 연료전지 자동차의 회생제동 시스템의 고장해석 (Analysis of Fault Diagnosis of Regenerative Braking System for Fuel Cell Vehicle with EMB System)

  • 송현우;최정훈;황성호;전광기;최성진
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.8-13
    • /
    • 2012
  • Recently, researches about the eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. The regenerative braking system is a key technology to improve the vehicle energy utilization efficiency because it transforms the kinetic energy to the electric energy through the electric motor. This new braking system requires cooperative control between electric controlled brake and regenerative brake. Therefore, it is necessary to establish fault-diagnosis and fail-safe evaluation criteria to secure reliability of the regenerative braking system. In this paper, the failure types and causes in regenerative braking system were analyzed. The transient behavior characteristics were examined based on fault-diagnosis and fail-safe upon failure of regenerative braking system.

소형 무인항공기 감항인증 기술기준 및 에너지 충돌기법 분석 연구 (Analysis for Unmanned Aerial Vehicle Airworthiness Certification Criteria)

  • 임준완;김용래;최병철;고준수
    • 한국항공운항학회지
    • /
    • 제22권4호
    • /
    • pp.65-74
    • /
    • 2014
  • Unmanned aerial vehicles(UAVs) refer to the aircraft which carries no human pilot and is operated under remote control or in autonomous operational mode. As the UAVs can perform the dull, dangerous and difficult missions, various kinds of UAVs with different sizes and weights have been developed and operated for both civil and military application. As the avionics and communication technology related to the UAVs are matured, the demand for the UAVs is dramatically increased. Therefore, It is important to develope airworthiness process and regulations of the UAVs to minimize related risk to the man and environment. This paper describes related regulations and classification of the small UAVs for different international airworthiness authorities. The analysis of the CS-LURS verses Stanag 4702 and Stanag 4703 can provide guidelines for the generation of the airworthiness certification criteria for the small UAVs in civil sector. This paper conducted kinetic impact energy analysis of the loss of the small UAVs control scenarios and of the very small UAVs under 66 joules. Based on the analysis, the energy impact analysis can be considered before the design certification approval for the small UAVs.

보행용 전문 신발과 일반 운동화의 운동역학적 비교 분석 (Sport biomechanical comparative analyses between general sporting shoe and functional walking shoe)

  • 최규정;권희자
    • 한국운동역학회지
    • /
    • 제13권2호
    • /
    • pp.161-173
    • /
    • 2003
  • This study was performed to investigate the kinematic and kinetic differences between functional walking shoe(FWS) and general sports shoe(GSS). The subjects for this study were 4 male adults who had the walking pattern of rearfoot strike with normal feet. The movement of one lower leg was measured using force platform and 3 video cameras while the subjects walked at the velocity of 2/1.5 m/s. The findings of this study were as follows 1. The angle of lower leg-ground and angle of knee with FWS was greater than with GSS at the moment of strike the floor and the moment of second peak ground reaction force. The decreasing rate of angle of ankle was smaller in FWS from the strike phase to the second peak ground reaction force. These mean upright walking and round walking along the shoe surface. 2. The maximal Increased angle of Achilles tendon and the minimal decreased angle of rearfoot were smaller in FWS very significantly(p<0.001). Thus FWS prevent the excessive pronation of ankle and have good of rear-foot control. 3. The vortical ground reaction force and the rate of it to the BW were smaller in FWS statistically(p<0.001). The loading rate was smaller in FWS, too, and thess represent the reduction of load on ankle joint and prevention of injuries on it.

Flow control downstream of a circular cylinder by a permeable cylinder in deep water

  • Gozmen, Bengi;Akilli, Huseyin
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.389-404
    • /
    • 2014
  • The flow characteristics of a circular cylinder surrounded by an outer permeable cylinder were experimentally investigated using Particle Image Velocimetry Technique in deep water flow. In order to consider the effects of diameter and porosity of the outer cylinder on flow structures of the inner cylinder, five different outer cylinder diameters (D=37.5, 52.5, 60, 75 and 90 mm) and eight different porosities (${\beta}$=0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8 and 0.85) were selected. During the experiments, the diameter of inner cylinder was kept constant as d=30 mm. The depth-averaged free-stream velocity was adjusted as U=0.156 m/s, which corresponds to the Reynolds number of Re=5000 based on the inner cylinder diameter. It has been concluded that both the outer permeable cylinder diameter and the porosity have important influences on the attenuation of vortex shedding in the wake region. The presence of outer permeable cylinder decreases the magnitude of Reynolds shear stress and turbulent kinetic energy compared to the bare cylinder case. Moreover, the spectral analysis of vortex shedding frequency has revealed that the dominant frequency of vortex shedding downstream of the cylinder arrangement also reduces substantially due to the weakened Karman shear layer instability.

Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands

  • Tran, An Thi Phuong;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.475-483
    • /
    • 2019
  • Vegetation cover plays a vital role in stabilizing the soil structure, thereby contributing to surface erosion control. Surface vegetation acts as a shelterbelt that controls the flow velocity and reduces the kinetic energy of the water near the soil surface, whereas vegetation roots reinforce the soil via the formation of root-particle interactions that reduce particle detachment. In this study, two vegetation-testing trials were conducted. The first trial was held on cool-season turfgrasses seeded in a biopolymer-treated site soil in an open greenhouse. At the end of the test, the most suitable grass type was suggested for the second vegetation test, which was conducted in an environmental control chamber. In the second test, biopolymers, namely, starch and xanthan gum hydrogels (pure starch, pure xanthan gum, and xanthan gum-starch mixtures), were tested as soil conditioners for improving the water-holding capacity and vegetation growth in sandy soils. The results support the possibility that biopolymer treatments may enhance the survival rate of vegetation under severe drought environments, which could be applicable for soil stabilization in arid and semiarid regions.