• Title/Summary/Keyword: Kinetic Study

Search Result 2,473, Processing Time 0.026 seconds

Potency of Botryococcus braunii cultivated on palm oil mill effluent wastewater as a source of biofuel

  • Azimatun Nur, Muhamad Maulana;Setyoningrum, Tutik Muji;Budiaman, I Gusti Suinarcana
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Indonesia is known as the largest oil palm producer in the world. However, along with the production, it generates wastes and pollution that caused the environmental problem in surrounding areas. Previous researchers reported that the high palm oil mill effluent (POME) concentration inhibited microalgae growth. However, the inhibition factor was not clearly explained by using kinetic model. This study presents kinetic models of Botryococcus braunii (B. braunii) cultivated on POME wastewater under different turbidity condition. Results showed that the growth model of Zwietering was closely suitable with experimental results. It was found that B. braunii was able to consume organic carbon from the POME wastewater on the logarithmic model. A modified kinetic model of Monod Haldane described the influence of turbidity and chemical oxygen demand on the cultivation. Turbidity of POME medium inhibited the growth rate at KI 3.578 and KII 179.472 NTU, respectively. The Lipid (39.9%), and carbohydrate (41.03%) were found in the biomass that could be utilized as biofuel source.

Kinetic modeling of organic and nitrogen removal from domestic wastewater in a down-flow hanging sponge bioreactor

  • Nga, Dinh Thi;Hiep, Nguyen Trung;Hung, Nguyen Tri Quang
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.243-250
    • /
    • 2020
  • A down-flow hanging sponge (DHS) bioreactor was operated for the treatment of domestic wastewater. The Stover-Kincannon model was applied for kinetic evaluation of the reactor performance during the operational period. As a result, the coefficient of determination (R2) for straight lines of effluent concentration from the experimental data and from the predictive data of BOD5; NH4+-N; and TN were 0.9727; 0.9883; and 0.9934, respectively. The calculation of saturation value constant (Umax - g L-1 d-1) and maximum utilization rate constant (KB - g L-1 d-1) were 56.818 and 75.034 for BOD5; 2.960 and 4.713 for NH4+-N; 2.810 and 8.37 for TN, respectively. The study suggests that Stover-Kincannon model can be used for effective evaluation of kinetic removal of BOD5; NH4+-N; and TN from domestic wastewater treated in a DHS bioreactor.

Numerical Analysis of Deep Seawater Flow Disturbance Characteristics Near the Manganese Nodule Mining Device (망간단괴 집광기 주위 해수 유동교란 수치해석)

  • Lim, Sung-Jin;Chae, Yong-Bae;Jeong, Shin-Taek;Cho, Hong-Yeon;Lee, Sang-Ho
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.475-485
    • /
    • 2014
  • Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.

Properties and Kinetics of Glutamate Dehydrogenase of Corynebacterium glutamicum (Corynebacterium glutamicum의 Glutamate Dehydrogenase의 효소학적 성질과 Kinetics)

  • Park, Mee-Sun;Park, Soon-Young;Kim, Sung-Jin;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.552-555
    • /
    • 1989
  • A 150-fold purified preparation of NADPH-specific glutamate dehydrogenase of Corynebacterium glutamicum (1) was used for the determination of kinetic parameters of the substrates, NADPH, NH$_4$Cl, and $\alpha$-ketoglutarate in the direction of glutamate synthesis. The kinetic constants determined from this study suggest a biosynthetic role for the enzyme, Based on the analysis of the result derived from initial velocity, the reaction mechanism was postulated to be ordered addition with NADPH as a first substrate to bind in the forward direction. Of the several metabolites tested for a possible function in the regulation of glutamate dehydrogenase activity, only malate and citrate were appeared to have an appreciable influence on the enzyme, Potassium chloride showed to be the most effective for the enzyme activity.

  • PDF

Determination of the Kinetic Properties of Platy cod in D for the Inhibition of Pancreatic Lipase Using a 1, 2-Diglyceride- Based Colorimetric Assay

  • Zhao, Hai-Un;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.968-972
    • /
    • 2004
  • A 1, 2-diglyceride-based multi-step colorimetric assay to measure the pancreatic lipase activ-ity was applied for the determination of the kinetic profiles of the lipase inhibition with a slight modification and the validity verification. With this assay method, our study revealed that platy-codin D, one of major constituents of Platycodi Radix, inhibits the pancreatic lipase activity in a competitive type, with the value of $K_1$ being 0.18${\pm}$0.02 mM. In addition, PO has affected the val-ues of $K_{m}$, app/ and $K_{cat}$/$K_{m}$ in a dose-dependent manner. The results shed a meaningful light on how PO mediates lipid metabolism in the intestinal tracts. On the other hand, since the revised assay is sensitive, rapid, and does not affect the accuracy to the kinetic properties, it is applica-ble not only to evaluation of the kinetic properties of the pancreatic lipase, but also to high-throughput screening of pancreatic lipase activity.

Behavior of Soluble Microbial Products by the Internal Recycle Rate in MBR Process (MBR공정에서 내부 반송비에 따른 생물대사성분의 거동)

  • Lee, Won-Bae;Cha, Gi-Cheol;Jeong, Tae-Young;Kim, Dong-Jin;Yoo, Ik-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.602-608
    • /
    • 2005
  • A laboratory-scale experiment was conducted to investigate control of soluble microbial products (SMP) by the internal recycle rate in the submerged membrane separation activated sludge process. The internal recycle rate of the reactor RUN 1 and RUN 2 were 100 % and 200 %, respectively. SMP concentration was rapidly accumulated in the reactor (RUN 1). The variation of accumulated SMP concentration was related to the denitrification rate at the beginning experiment however SMP concentration decreased without correlatively to the denitrification rate during long operation time. The microbial kinetic model was rapidly presented in the both microbial growth and extinction in the reactor (RUN 1). In the SMP kinetic model, Internal recycle rate is the lower, value of UAP and BAP which SMP matter were presented low. The study about development of kinetic model is relatively well adjusted to the experiment exception SMP. In the future, SMP formation equation must be thought that continually research is necessary.

Adsorption kinetic and mechanistic view of aqueous ferric ion onto bio-natural rice grains

  • Al-Anber, Mohammed A.
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.73-88
    • /
    • 2017
  • Adsorption kinetics of aqueous ferric ion ($Fe^{3+}$) onto bio-natural rice grains (BRG) have been studied in a batch system. The influence of contact time (0-180 minutes), the dosage of BRG adsorbent (10, 20, 40, and $60gL^{-1}$), and ambient temperature (27, 37, 47, and $57^{\circ}C$) for the adsorption system have been reported. The equilibrium time achieved after 20 minutes of adsorption contact time. The maximum removal of ferric ion is 99% by using $60gL^{-1}$ of BRG, $T=37^{\circ}C$, and $50mgL^{-1}$ ferric ion solution. Adsorption kinetic and diffusion models, such as pseudo-first order, pseudo-second order, and Weber-Morris intra-particle diffusion model, have been used to describe the adsorption rate and mechanism of the ferric ion onto BRG surface. The sorption data results are fitted by Lagergren pseudo-second order model ($R^2=1.0$). The kinetic parameters, rate constant, and sorption capacities have been calculated. The new information in this study suggests that BRG could adsorb ferric ion from water physiosorption during the first 5 minutes. Afterward, the electrostatic interaction between ferric ion and BGR-surface could take place as a very weak chemisorptions process. Thus, there is no significant change could be noticed in the FTIR spectra after adsorption. I recommend producing BGR as a bio-natural filtering material for removing the ferric ion from water.

The Effect of Closed Kinetic and Open Kinetic Exercise on Thickness of Low Back Stabilization Exercise Using an Ultrasonography Imaging (닫힌사슬운동과 열린사슬운동이 요부안정화근의 두께에 미치는 영향)

  • Bae, Wonsik;Kim, Chihyok
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.2
    • /
    • pp.67-80
    • /
    • 2013
  • Purpose : This study was to investigate effects of closed kinetic chain and open kinetic chain exercise on the lumbar stabilizarion. Methods : A total of 30 healthy over 20 years old college students(men = 14, women = 16) who were participated in this. We selected randomly people of CKC, OKC, and control group. For the past four weeks, CKC and OKC group worked out 3 times per week and then we compared within group and between groups on muscle width. Results : 1. The width of internal oblique, transverse abdominis, and multifidus were all significantly increased after four weeks exercise in the CKC group(P<.05). 2. The width of internal oblique, transverse abdominis, and multifidus were all increased after four weeks exercise in the OKC group but transverse abdominis musule only showed significant difference. 3. Difference values between pre-exercise and post-exercise of transverse abdominis and multifidus in the CKC group was significantly high and difference among the groups were significant. Conclusion : Accordingly, lumbar stabilizing exercise was more effective to increase a width of abdominal deep muscles through CKC exercise.

Macro-Kinetics of Biofiltration for Odor Control:Dimethyl Disulfide

  • Kim, Jo-Chun;Bora C. Arpacioglu;Eric R. Allen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E3
    • /
    • pp.165-174
    • /
    • 2002
  • A dual -column biofilter system with two different composts was used to investigate the macro-kinetics of dim-ethyl disulfide (DMDS) degradation. The biofilter columns were filled with compost mixtures up to one meter, The gas How rate and DMDS concentration to the biofilters were varied to study their effect on the removal characteris-tics of DMDS. It was found that the biodegradation of DMDS was governed by zero-order reaction -limited macro-kinetics for inlet DMDS concentrations between 10 and 55 ppmv. The overall average zero-order kinetic coeffi-cient for DMDS removal by compost was 0.50 ($\pm$0.1) ppm/sec for both compost mixtures studied. Variations in individual kinetic coefficients were observed due to varying environmental conditions, such as pH and temperature. The kinetic coefficients determined are specific to the system discussed in this work. During high acidity conditions in the filter beds, methyl mercaptan (MM) was observed in the gas samples collected. Appearance of MM was pro-bably due to decreased microbial activity in the lower portions of the biofilter. Considering the neutral pH range required and the presence of methyl mercaptan, it is likely that the microorganisms present in the biofilters used in this research are similar to the T. thioparus (strain E6) species.

Relationship between solar flares and halo CMEs using stereoscopic observations

  • Jang, Soojeong;Moon, Yong-Jae;Kim, Sujin;Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.82-82
    • /
    • 2016
  • To find the relationship between solar flares and halo CMEs using stereoscopic observations, we investigate 182 flare-associated halo CMEs among 306 front-side halo CMEs from 2009 to 2013. We have determined the 3D parameters (radial speed and angular width) of these CMEs by applying StereoCAT to multi-spacecraft data (SOHO and STEREO). For this work, we use flare parameters (peak flux and fluence) taken from GOES X-ray flare list and 2D CME parameters (projected speed, apparent angular width, and kinetic energy) taken from CDAW SOHO LASCO CME catalog. Major results from this study are as follows. First, the relationship between flare peak flux (or fluence) and CME speed is almost same for both 2D and 3D cases. Second, there is a possible correlation between flare fluence and CME width, which is more evident in 3D case than 2D one. Third, the flare fluence is well correlated with CME kinetic energy (CC=0.63). Fourth, there is an upper limit of CME kinetic energy for a given flare fluence (or peak flux). For example, a possible CME kinetic energy ranges from 1030.6 to 1033 erg for a given X1.0 class flare. Our results will be discussed in view of the physical mechanism of solar eruptions.

  • PDF