• 제목/요약/키워드: Kinetic Property

검색결과 85건 처리시간 0.029초

Removal of Methylene Blue by Modified Carbon Prepared from the Sambucus Nigra L. plant

  • Manoochehri, Mahboobeh;Amooei, Khadijeh
    • Carbon letters
    • /
    • 제14권1호
    • /
    • pp.27-33
    • /
    • 2013
  • An increase in population initiating rapid industrialization was found to consequently increase the effluents and domestic wastewater into the aquatic ecosystem. In this research the potentialities of Sambucus nigra L. (SNL) plant in the remediation of water, contaminated with methylene blue (MB), a basic dye were investigated. SNL was chemically impregnated with $KHCO_3$. Operating variables studied were pH, amount of adsorbent and contact time. In general, pH did not have any significant effect on colour removal and the highest adsorption capacity was obtained in 0.035 g MB/g-activated carbon. The Langmuir, Freundlich, Temkin and Dubinin-Radushkevich adsorption models were applied to describe the equilibrium isotherms. The adsorption isotherm data were fitted to the Temkin isotherm. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order and chemisorption pseudo-second-order kinetic models. The sorption process obeyed the pseudo-second-order kinetic model. The surface area, pores volume and diameter were assessed by the Brunauer-Emmett-Teller and Barrett-Joyner-Halenda methods. The results were compared to those from activated carbon (Merck) and an actual sample. The results indicate that SNL can be employed as a natural and eco-friendly adsorbent material for the removal of dye MB from aqueous solutions.

Mutational Analysis of Two Conserved Active Site Tyrosine Residues in Matrilysin

  • Jaeho Cha
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.44-48
    • /
    • 1999
  • The ionization of tyrosine residue is known to be involved in the stabilization of transition-state in catalysis of astacin based upon the astacin-transition state analog structure. Two tyrosine residues, Tyr-216 and Tyr-219, are conserved in all MMPs related with astacin family, We replaced Tyr-216 and Tyr-219 into phenylalanine, respectively and the zinc binding properties, kinetic parameters, and pH dependence of each mutant are determined in order to examine the role of tyrosine residue in matrilysin catalysis. Both mutants contain two zinc atoms per mol of enzyme, indicating that either tyrosime does not affect the zinc binding property of the enzyme. Y216F and Y219F mutants are highly active and the kcat/Km values are only decreased 1.1-1.5-fold compared to the wild-type enzyme. The decrease in the activity of the mutants is essentially due to the increase in Km value. The pH dependencies of the kcat/Km values for both mutants are similar to the corresponding dependencies obtained with the wild type enzyme. The pKa values at the alkaline side of both mutants are not changed. These kinetic and pH dependence results indicate that the ionization of active site tyrosine residue of matrilysin is not reflected in the kinetics of peptide hydrolysin as catalyzed by astacin.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

Curing Kinetics and Chemorheological Behavior of No-flow Underfill for Sn/In/Bi Solder in Flexible Packaging Applications

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Lee, Jin-Ho
    • ETRI Journal
    • /
    • 제38권6호
    • /
    • pp.1179-1189
    • /
    • 2016
  • A chemorheological analysis of a no-flow underfill was conducted using curing kinetics through isothermal and dynamic differential scanning calorimetry, viscosity measurement, and solder (Sn/27In/54Bi, melting temperature of $86^{\circ}C$) wetting observations. The analysis used an epoxy system with an anhydride curing agent and carboxyl fluxing capability to remove oxide on the surface of a metal filler. A curing kinetic of the no-flow underfill with a processing temperature of $130^{\circ}C$ was successfully completed using phenomenological models such as autocatalytic and nth-order models. Temperature-dependent kinetic parameters were identified within a temperature range of $125^{\circ}C$ to $135^{\circ}C$. The phenomenon of solder wetting was visually observed using an optical microscope, and the conversion and viscosity at the moment of solder wetting were quantitatively investigated. It is expected that the curing kinetics and rheological property of a no-flow underfill can be adopted in arbitrary processing applications.

대형 디젤엔진 내구 시험에 의한 다른 종류 엔진오일의 물성 및 성능 특성에 관한 연구 (A Study on the Property and Performance Characteristics of Different Kind Engine Oil by Endurance Test of Heavy-duty Diesel Engine)

  • 이민호;김정환;송호영;김기호;하종한
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.48-56
    • /
    • 2014
  • Engine oil is an oil used for lubrication of various internal combustion engines. The main function is to reduce wear on moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts. In engines, there are parts which move against each other. Otherwise, the friction wastes the useful power by converting the kinetic energy to heat. Those parts were worn away, which could lead to lower efficiency and degradation of the engine. It increases fuel consumption, decreases power output, and can induce the engine failure. This study was conducted to evaluate the relation between engine oil property changes and engine performance for the diesel engine. This test was performed by using 12L, 6 cylinder, heavy duty engines. Low SAPS 10W30 engine oil (two type engine oils) was used. Test procedure and method was in accordance with the modified CEC L-57-T97 (OM441LA) method. In this study, TAN, TBN, KV and metal components, engine power, blowby gas, A_F were presented to evaluate the relation with engine oil property changes and engine performance. TAN, TBN, KV and metal We found that the components were generally increased but engine performance did not change. This results mean that property changes did not affect on engine performance because those were not enough to affect engine performance.

세라믹스의 물리/기계적 물성과 방탄물성과의 상관관계 연구 (The relation between physical/mechanical properties md ballistic properties in several engineering ceramics)

  • 김철수;이형복
    • Composites Research
    • /
    • 제18권6호
    • /
    • pp.34-39
    • /
    • 2005
  • 본 연구에서는 방탄재료로 활용 가능할 것으로 예상되는 여러 구조용 세라믹스의 물리기계적 물성과 방탄물성과의 상호연관성을 분석하였다. 물리기계적 물성을 측정한 후 30mm 고체추진포에서 10.7의 L/D비를 갖는 텅스텐 긴 관통자를 비행시켜 운동에너지(KE)탄에 대한 방탄물성을 측정하였으며, K215 자탄을 기폭시켜 성형작약(HEAT)탄에 대한 방탄물성을 측정하였다. 영률/밀도비, 경도/밀도비 및 꺽임강도/밀도비가 증가할수록 방탄물성이 대체적으로 증가하는 경향을 보였으며, 특히 HEL(Hugoniot Elastic Limit)/밀도비가 증가함에 따라 KE탄에 대한 방탄물성이 선형적으로 증가하는 현상을 나타내었다.

균열정지현상에 관한 기초적 연구 (A Basic Study on the Crack Arrest Phenomena)

  • 이억섭;김상철;송정일
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.112-118
    • /
    • 1990
  • 본 연구에서는 ASTM-E24.01.06에서 제안하고 있는 실험방법을 응용하여 균열 정지 파괴인성값을 측정하였다.즉 쐐기와 분리형 부싱(wedge and split bushing)으 로 압축하중을 가함으로 균열선 웨지하중 시편[crack line wedge loaded specimen(CL- WL시편)]에 인장력을 발생시켜서 균열정지 응력확대계수( $K_{1a}$)를 결정하였다. 그리고 균열개시 응력확대계수가 균열정지 응력확대계수에 미치는 영향들을 여러가지 재료들에 대하여 체계적으로 검토하였다.다.

합성 제올라이트를 이용한 pH에 따른 Cu와 Zn 이온의 흡착특성 (Cu and Zn Ions Adsorption Properties at Various pH with a Synthetic Zeolite)

  • 이창한
    • 한국환경과학회지
    • /
    • 제21권7호
    • /
    • pp.805-813
    • /
    • 2012
  • The removal property of Cu and Zn ions by chemical precipitation and adsorption using zeolite(Z-C1) prepared from coal fly ash(CFA) were evaluated in this study. Adsorption kinetic and equilibrium mechanisms described to analyze parameters and correlation factors with Lagergen $1^{st}$ and $2^{nd}$ order model and Langmuir and Freundlich model. Analysis of adsorption kinetics data revealed that the pseudo $2^{nd}$ order kinetics mechanism was predominant. The equilibrium data in pH 3 - 5 were able to be fitted well to a Langmuir model, by which the maximum adsorption capacities($q_{max}$) were determined at 124.9 - 140.1 mg $Cu^{2+}/g$ and 153.2 - 166.9 mg $Zn^{2+}/g$, respectively. We found that Z-C1 has a potential application as absorbents in metal ion recovery with low pH.

점결특성이 무회분탄과 약점결탄의 연소반응성에 미치는 영향 (The effect of coking property on combustion reactivity of weak caking coals and ash-free coal)

  • 이순호;엄수현;김규보;전충환
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.47-49
    • /
    • 2014
  • 발전소에서 설계 규격을 벗어나는 저등급 석탄을 사용하기 시작하면서, 보일러에서의 연소특성을 예측하기 어려운 다양한 성질의 석탄이 들어오게 되어 각종 연소 문제가 증가하고 있다. 이 중 약 점결 특성을 가지는 저등급 석탄의 사용은 대형 클링커로 인한 보일러 하부의 튜브 손상 사고, 재열증기온도 상승으로 인한 출력감발 등의 문제를 발생시켰다. 또한 현재 개발 중인 무회분석탄 역시 점결 특성을 가지고 있는 것으로 알려져 있어 보일러 내부의 다양한 문제를 일으킬 것으로 예상되고 있다. 발전소에서는 강점결탄 수입 규제를 위해 CSN(Crucible Swelling Number)를 이용하여 제철용으로 사용되는 강점결 석탄의 도입을 규제해왔으나, 발전소 운영에 악 영향을 미치는 약 점결탄에 대한 규제 및 대응으로는 그 효과가 미미한 실정이다. 따라서 본 연구에서는 석탄의 점결 특성 중 팽창 특성을 분석할 수 있는 Microdilatometer와 TGA를 이용한 연소반응성 분석을 통해 석탄의 점결 특성이 연소반응성에 미치는 영향을 분석하였다.

  • PDF

콩나물 Peroxidase의 효소적 특성 (Enzymatic Characterization of Peroxidase from Soybean Sprouts)

  • 박인식;이민경
    • 한국식품영양과학회지
    • /
    • 제27권6호
    • /
    • pp.1143-1147
    • /
    • 1998
  • Enzymatic characterization of peroxidase(E.C. 1.11.1.7) from soybean sprouts was investigated. The optimum pH of the purified peroxidase was 7.0 and relatively stable at pH 6.0~7.0. And the optimum temperature was 50oC. The enzyme was most active with guaiacol as a substrate, followed by (+)catechin, pyrogallol and p phenylenediamine. The Km values for guaiacol and H2O2 were 4.2mM and 2.5mM, respectively. L Ascorbic acid and 2 mercaptoethanol greatly inhibited the enzyme activity, while Cu2+, Co2+ and Ni2+ activated the enzyme.

  • PDF