• Title/Summary/Keyword: Kinetic Friction Coefficient

Search Result 53, Processing Time 0.038 seconds

Kinetic Friction of Grains on Surfaces (곡물의 동마찰계수 측정에 관한 연구)

  • 김만수;이동호
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.49-54
    • /
    • 1976
  • No reliable basic data were available on the kinetic friction coefficients between grains and frictional surfaces being used in grain handling equipments in Korea. In order to determine appropriate kinetic friction coefficient between three grains (Tongil, Jinheung, barley) and two surfaces at four levels of moisture content of grain, the laboratory tests using the newly designed experimental apparatus and strain gage measuring system were carried out, and the relationship among factors that affect kinetic friction coefficients of grains were analyzed. The results of this study are summarized as follows ; 1. Kinetic friction coefficient of samples being tested was dependent on surfaces and moisture content of grains . The ranges of them were 0.369-0.512 for Tongil variety , 0.347-0.469 for Jinheung variety, and 0.360-0.502 for barley, respectively. 2. There was a little difference of kinetic friction coefficients between two varieties of rice at the same testing conditions. Because the interaction had been large among treatments , each value of kinetic friction coefficient determined in this study should be used only for the corresponding conditions in this study . 3. Kinetic friction coefficients in creased linearly with increase in moisture content of grains and their regression equations were shown in Table.4. 4. Kinetic friction coefficients on a PVC surfaces was shown a little lower values than on the steel surfaces at various moisture levels, but especially in Jinheung and barley, a big difference was shown.

  • PDF

Development of New Measurement Device for the Coefficient of Kinetic Friction by Using Side Air-Guide Track (측면 에어 가이드 트랙을 이용한 새로운 운동마찰계수 측정 장치의 개발)

  • Nam, Hyoung Joo
    • Journal of Engineering Education Research
    • /
    • v.21 no.3
    • /
    • pp.12-19
    • /
    • 2018
  • In this study, a new experimental device was developed for measurement of the coefficient of kinetic friction using a photo gate timer system which have advantages of easy and accurate detection of motion. This device, consisting of a side air-guide track and a side friction-free glider, forces a friction sample to move in a straight line without producing unnecessary friction. The new device is compared to two conventional measuring methods of friction for four different friction samples: one is using a camera system and the other is using a force sensor. It is demonstrated that the developed friction device in this study is easier to operate and produces the most accurate and the least deviating results among them. On the basis of these results, we propose that friction experiment using the new friction device is included in general physics experiment, so that engineering students should have a chance to get correct understanding of classical mechanics including friction phenomenon.

Friction-induced Vibration of a Linear Compressor (Linear Compressor에서 발생하는 마찰에 의한 진동 연구)

  • 박종찬;왕세명;정충민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.695-700
    • /
    • 2003
  • This paper dealt with friction-induced vibrations in engineering practice, specifically arising at the moment of counterturn of two friction surfaces. The harshness of the vibrations are attributed to the sharp change of the friction coefficients from kinetic to static near zero relative velocity, which is one of the examples of the stick slip. But the experimental results and numerical analysis of piston and cylinder operation showed that transition of the friction coefficient from kinetic to static is insignificant in vibrations. Dry friction itself dominates the harshness of vibrations. This study shows that how dry friction triggers the vibrations and demonstrates the effect of sharp transition from kinetic to static friction coefficient on the vibrations.

  • PDF

Friction Model to Realize Self-Excited Vibration of Multi-body Systems (다물체계의 자려진동 구현을 위한 마찰 모델링)

  • Roh, Hyun-Young;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.103-108
    • /
    • 2007
  • This paper presents a friction model to realize self-excited vibration of multi-body systems. The friction coefficient is modeled with a spline function in most commercial codes. Even if such a function resolves the problem of discontinuity in friction force, it cannot realize self-excited vibration phenomena. Furthermore, as the relative velocity approaches zero, the friction coefficient approaches zero with the conventional model. So, slip occurs when small force is applied to the system. To avoid these problems a new friction model is proposed in this study. With the new friction model, the self-excited vibration can be realized since the friction coefficient changes with the relative velocity. Furthermore, the slip phenomena could be reduced significantly with the proposed model.

  • PDF

Friction Model to Realize Self-excited Vibration of Multi-body Systems (다물체계의 자려진동 구현을 위한 마찰 모델링)

  • Roh, Hyun-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.524-530
    • /
    • 2007
  • This paper presents a friction model to realize self-excited vibration of multi-body systems. The friction coefficient is modeled with a spline function in most commercial codes. Even if such a function resolves the problem of discontinuity in friction force, it cannot realize self-excited vibration phenomena. Furthermore, as the relative velocity approaches zero, the friction coefficient approaches zero with the conventional model. So, slip occurs when small force is applied to the system. To avoid these problems a new friction model is proposed in this study. With the new friction model, the self-excited vibration can be realized since the friction coefficient changes with the relative velocity. Furthermore, the slip phenomena could be reduced significantly with the proposed model.

Motion of rigid unsymmetric bodies and coefficient of friction by earthquake excitations

  • Zadnik, Branko
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.257-267
    • /
    • 1994
  • Motions of an unsymmetric rigid body on a rigid floor subjected to earthquake excitations with special attention to coefficient of friction are investigated. Motions of a body in a plane are classified (Ishiyama 1980) into six types, i.e. (1) rest, (2) slide, (3) rotation, (4) slide rotation, (5) translation jump, (6) rotation jump. Based upon the theoretical and experimental research work special attention is paid to the sliding of a body. The equations of motions and the behavior of coefficient of friction in the time of floor excitation are studied. One of the features of this investigation is the introduction and estimation of the "time dependent" coefficient of friction. It has been established that the constant kinetic coefficient of friction $${\mu}(kin){\sim_\sim}0.8{\mu}(stat)$$ does not give the appropriate results. The method for the estimation of the friction coefficient variation during the time is given.

The effect of hexamethylenetetramine contents and cure properties on friction characteristics of phenolic resin (페놀수지의 마찰특성에 미치는 HEXA의 함량 및 경화도의 영향)

  • Kim, Dae-Kyeun;Jang, Ho;Yoon, Ho-Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.49-56
    • /
    • 1999
  • A material was formulated with Phenol novolac and HEXA only. The cure kinetics and thermal characteristics of phenol novolac with various HEXA contents were peformed by differential scanning calorimetry and thermal gravimetric analysis. All kinetic parameters of the curing reaction including the reaction order, activation energy, and rate constant were calculated and reported. The results indicate that the curing reaction goes through an autocatalytic kinetic mechanism. The friction and wear characteristics of this material were determined using friction material testing machine. The friction coefficient of phenol novolac with various HEXA contents was determined using the PV(pressure & velocity) factor. The most stable and highest friction coefficient with a various pressure and velocity condition was found at HEXA 10 wt.% material. The specific wear rate per unit sliding distance with a various HEXA contents was reported.

  • PDF

Some Physical Properties of Chopped Rice Straw (절단 볏짚의 물리적 성질)

  • 박승제;김명호
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 1998
  • This study was performed to determine the kinetic friction coefficient bulk density, dynamic and static angle of repose, and terminal velocity of the chopped rice straw in the moisture range of 8~23%, which could be used for better design and operation of the processing machinery and handling facilities. Friction coefficient was determined from the horizontal traction force measured by pulling the container holding the mass of rice straw on the various plate materials. Bulk density was measured with an apparatus consisting of a filling funnel and a receiving vessel. Dynamic angle of repose was calculated from the photos of bulk samples piled by gravity flow on a circular platform. Static angle of repose was determined by measuring the side angle of the bulk material which was left in the cylindrical container after natural discharge of the bulk sample through a circular hole in the bottom plate. Kinetic friction coefficients of rice straw on the PVC, mild steel, stainless steel, and galvanized steel were in the range of 0.303~0.434, 0.222~0.439, 0.204~0.448, and 0.206~0.407, respectively. and indicated linear increase with moisture content. The effects of moisture change on the friction coefficients were in the order of PVC, mild steel, galvanized steel, and stainless steel. Bulk density, dynamic and static angle of repose, and terminal velocity were in the range of 56.8~60.3 kg/m$^3$, 41.4~45.9$^{\circ}$, 94.4~100.8$^{\circ}$, and 1.07~4.48 m/s, respectively, and were increased linearly with the moisture content.

  • PDF

Effects of Steel Fiber, Zircon, and Cashew in the Brake Friction Materials on Creep Groan Phenomena (자동차 브레이크용 마찰재 내의 강철섬유, 지르콘, 캐슈가 크립 그론에 미치는 영향)

  • Jang, Ho;Lee, Kang-Sun;Lee, Eun-Ju;Jeong, Geun-Joong;Song, Hyun-Woo
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.278-282
    • /
    • 2007
  • Friction characteristics of a low-steel friction material were examined to investigate creep groan phenomena. The amount of three ingredients (steel fiber, $ZrSiO_4$, cashew) were changed to produce test specimens using a constrained mixture design. Tribological properties of the friction material specimens were obtained by using a 1/5 scale dynamometer. Results showed that the amount of three different ingredients strongly affected the level of friction coefficient and the difference between the static friction coefficient and the kinetic friction coefficient $({\Delta}{\mu}).\;ZrSiO_4$ and steel fiber tended to increase the average friction coefficient and aggravated the stick-slip phenomena suggesting high creep groan propensity. On the other hand, cashew tended to decrease average friction coefficient and ${\Delta}{\mu}$.

Physical Properties of Rice Husk (왕겨의 물리적 성질)

  • Park S. J.;Kim M. H.;Shin H. M.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.229-234
    • /
    • 2005
  • Kinetic friction coefficient, bulk density, dynamic and static angle of repose, and terminal velocity of rice husk at the moisture range 7 to $23\%$ w.b. were determined. It could lead to better design and operation of the processing machinery and handling facilities. Friction coefficient was determined from the horizontal traction force measured by pulling the container holding a mass of rice husk on various plate materials. Dynamic angle of repose was calculated from the photos of bulk samples piled by gravity flow on a circular platform. Static angle of repose was determined by measuring the side angle of the bulk material which was left in a cylindrical container after natural discharge of the bulk sample through a circular hole in the bottom plate. Kinetic friction coefficients of rice husk were in the range of $0.254\~0.410,\;0.205\~0.520,\;0.229\~0.400,\;and 0.133\~0.420$ on PVC, mild steel, galvanized steel, and stainless steel, respectively. Bulk density, dynamic and static angle of repose, and terminal velocity were in the range of $91.7\~98.3$ $kg/m^3$, $40.2\~47.6^{\circ},\;52.8\~83.7^{\circ},$ and $1.36\~1.73$ m/s, respectively. These physical properties of rice husk increased linearly as the moisture content increased.